Радиолокационные станции: история и основные принципы работы. Устройство приборов рлс, назначение и принцип работы Импульсные модуляторы радиолокационных станций

Всем добрый вечер:) Шарил по просторам интернета после посещения войсковой части с немалым количеством РЛС.
Очень заинтересовали сами РЛС.Думаю что не только меня,поэтому решил выложить данную статью:)

Радиолокационные станции П-15 и П-19


Радиолокационная станция П-15 дециметрового диапазона предназначена для обнаружения низколетящих целей. Принята на вооружение в 1955 году. Используется в составе радиолокационных постов радиотехнических формирований, батареях управления зенитных артиллерийских и ракетных формирований оперативного звена ПВО и на пунктах управления ПВО тактического звена.

Станция П-15 смонтирована на одном автомобиле вместе с антенной системой и развертывается в боевое положение за 10 мин. Агрегат питания транспортируется в прицепе.

В станции имеются три режима работы:
- амплитудный;
- амплитудный с накоплением;
- когерентно-импульсный.

РЛС П-19 предназначена для ведения разведки воздушных целей на малых и средних высотах, обнаружения целей, определения их текущих координат по азимуту и дальности опознавания, а также для передачи Радиолокационной информации на командные пункты и на сопрягаемые системы. Она представляет собой подвижную двухкоординатную радиолокационную станцию, размещенную на двух автомобилях.

На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура передачи радиолокационной информации, имитации, связи и сопряжения с потребителями радиолокационной информации, функционального контроля и аппаратура наземного радиолокационного запросчика.

На втором автомобиле размещается антенно-поворотное устройство РЛС и агрегаты электропитания.

Сложные климатические условия и длительность эксплуатации радиолокационных станций П-15 и П-19 привели к тому, что к настоящему времени большая часть РЛС требует восстановления ресурса.

Единственным выходом из сложившейся ситуации считается модернизация старого парка РЛС на базе РЛС «Kacтa-2E1».

В предложениях по модернизации учитывалось следующее:

Сохранение в неприкосновенности основных систем РЛС (антенной системы, привода вращения антенны, СВЧ-тракта, системы электропитания, транспортных средств);

Возможность проведения модернизации в условиях эксплуатации с минимальными финансовыми затратами;

Возможность использования высвобождаемой аппаратуры РЛС П-19 для восстановления изделий, не подвергнутых модернизации.

В результате модернизации мобильная твердотельная маловысотная РЛС П-19 будет способна выполнять задачи контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно-пилотируемых летательных аппаратов и крылатых ракет, в том числе действующих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.

РЛС легко адаптируется к использованию в различных системах военного и гражданского назначения. Может применяться для информационного обеспечения систем ПВО, ВВС, систем береговой обороны, сил быстрого реагирования, систем управления движением самолетов гражданской авиации. Кроме традиционного применения в качестве средств обнаружения низколетящих целей в интересах вооруженных сил модернизированная РЛС может использоваться для контроля воздушного пространства с целью пресечения транспортировки оружия и наркотиков маловысотными, малоскоростными и малоразмерными летательными аппаратами в интересах специальных служб и подразделений полиции, занимающихся борьбой с наркобизнесом и контрабандой оружия.

Модернизированная радиолокационная станция П-18

Предназначена для обнаружения самолетов, определения их текущих координат и выдачи целеуказания. Является одной из самых массовых и дешевых станций метрового диапазона. Ресурс этих станций в значительной мере исчерпан, а их замена и ремонт затруднены в связи с отсутствием устаревшей к настоящему времени элементной базы.
Для продления срока службы РЛС П-18 и улучшения ряда тактико-технических характеристик осуществлена модернизация станции на основе монтажного комплекта, имеющего ресурс не менее 20-25 тыс. часов и срок службы 12 лет.
В антенную систему введены четыре дополнительных антенны для адаптивного подавления активных помех, устанавливаемые на двух отдельных мачтах, Цель модернизации - создание РЛС с ТТХ, удовлетворяющими современным требованиям, при сохранении облика базового изделия за счет:
- замены устаревшей элементной базы аппаратуры РЛС П-18 на современную;
- замены лампового передающего устройства твердотельным;
- введения системы обработки сигнала на цифровых процессорах;
- введения системы адаптивного подавления активных шумовых помех;
- введения систем вторичной обработки, контроля и диагностики аппаратуры, отображения информации и управления на базе универсальной ЭВМ;
- обеспечения сопряжения с современными АСУ.

В результате модернизации:
- уменьшен объем аппаратуры;
- увеличена надежность изделия;
- повышена помехозащищенность;
- улучшены точностные характеристики;
- улучшены эксплуатационные характеристики.
Монтажный комплект встраивается в аппаратную кабину РЛС вместо старой аппаратуры. Небольшие габариты монтажного комплекта позволяют проводить модернизацию изделий на позиции.

Радиолокационный комплекс П-40А


Дальномер 1РЛ128 «Броня»

Радиолокационный дальномер 1РЛ128 "Броня" является РЛС кругового обзора и совместно с радиолокационным высотомером 1РЛ132 образует трехкоординатный радиолокационный комплекс П-40А.
Дальномер 1РЛ128 предназначен для:
- обнаружения воздушных целей;
- определения наклонной дальности и азимута воздушных целей;
- автоматического вывода антенны высотомера на цель и отображения значения высоты цели по данным высотомера;
- определения госпринадлежности целей («свой - чужой»);
- управления своими самолетами с использованием индикатора кругового обзора и самолетной радиостанции Р-862;
- пеленгации постановщиков активных помех.

Радиолокационный комплекс входит в состав радиотехнических формировании и соединений ПВО, а также зенитных ракетных (артиллерийских) частей и соединений войсковой ПВО.
Конструктивно антенно-фидерная система, вся аппаратура и наземный радиолокационный запросчик размещены на самоходном гусеничном шасси 426У со своими комплектующими. Кроме того, на нем располагаются два газотурбинных агрегата питания.

Двухкоординатная РЛС дежурного режима "Небо-СВ"


Предназначена для обнаружения и опознавания воздушных целей в дежурном режиме при работе в составе радиолокационных подразделений войсковой ПВО, оснащенных и не оснащенных средствами автоматизации.
РЛС представляет собой подвижную когерентно-импульсную радиолокационную станцию, размещенную на четырех транспортных единицах (три автомобиля и прицеп).
На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура автосъема и передачи радиолокационной информации, имитации, связи и документирования, сопряжения с потребителями радиолокационной информации, функционального контроля и непрерывной диагностики, аппаратура наземного радиолокационного запросчика (НРЗ).
На втором автомобиле размещается антенно-поворотное устройство РЛС.
На третьем автомобиле - дизельная электростанция.
На прицепе размещается антенно-поворотное устройство НРЗ.
РЛС может доукомплектовываться двумя выносными индикаторами кругового обзора и кабелями сопряжения.

Мобильная трехкоординатная радиолокационная станция 9С18М1 «Купол»

Предназначена для обеспечения радиолокационной информацией командных пунктов зенитных ракетных соединений и частей войсковой ПВО и пунктов управления объектов системы ПВО мотострелковых и танковых дивизий, оснащенных ЗРК "Бук-М1-2" и "Тор-М1".

РЛС 9С18М1 представляет собой трехкоординатную когерентно-импульсную станцию обнаружения и целеуказания, использующую зондирующие импульсы большой длительности, что обеспечивает большую энергию излучаемых сигналов.

РЛС оснащена цифровой аппаратурой автоматического и полуавтоматического съема координат и аппаратурой опознавания обнаруженных целей. Весь процесс функционирования РЛС максимально автоматизирован благодаря применению быстродействующих вычислительных электронных средств. Для повышения эффективности работы в условиях активных и пассивных помех в РЛС используются современные методы и средства помехозащиты.

РЛС 9С18М1 размещается на гусеничном шасси высокой проходимости и оснащена системой автономного электроснабжения, аппаратурой навигации, ориентирования и топопривязки, средствами телекодовой и речевой радиосвязи. Кроме того, РЛС имеет встроенную систему автоматизированного функционального контроля, обеспечивающую быстрое отыскивание неисправного сменного элемента и тренажера для обработки навыков работы операторов. Для перевода их из походного положения в боевое и обратно используются устройства автоматического развертывания и свертывания станции.
РЛС может работать в жестких климатических условиях, перемещаться своим ходом по дорогам и бездорожью, а также перевозиться любым видом транспорта, включая воздушный.

ПВО ВВС
Радиолокационная станция "Оборона-14"



Предназначена для дальнего обнаружения и измерения дальности и азимута воздушных целей при работе в составе АСУ или автономно.

РЛС размещается на шести транспортных единицах (два полуприцепа с аппаратурой, два – с антенно-мачтовым устройством и два прицепа с системой энергоснабжения). На отдельном полуприцепе имеется выносной пост с двумя индикаторами. Он может быть удален от станции на расстояние до 1 км. Для опознавания воздушных целей РЛС комплектуется наземным радиозапросчиком.

В станции применена складывающаяся конструкция антенной системы, позволившая существенно сократить время ее развертывания. Защита от активных шумовых помех обеспечивается перестройкой рабочей частоты и трехканальной системой автокомпенсации, позволяющей автоматически формировать "нули" в диаграмме направленности антенны в направлении на постановщиков помех. Для защиты от пассивных помех применена когерентно-компенсационная аппаратура на потенциалоскопических трубках.

В станции предусмотрены три режима обзора пространства:

- "нижний луч" - с увеличенной дальностью обнаружения целей на малых и средних высотах;

- "верхний луч" - с увеличенной верхней границей зоны обнаружения по углу места;

Сканирования - с поочередным (через обзор) включением верхнего и нижнего лучей.

Станция может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 30 м/с. Многие из этих станций поставлены на экспорт и до сих пор эксплуатируются в войсках.

РЛС "Оборона-14" может быть модернизирована на современной элементной базе с использованием твердотельных передатчиков и цифровой системы обработки информации. Разработанный монтажный комплект аппаратуры позволяет прямо на позиции у потребителя выполнить в короткий срок работы по модернизации РЛС, приблизить ее характеристики к характеристикам современных РЛС, и продлить срок эксплуатации на 12 - 15 лет при затратах в несколько раз меньших, чем при закупке новой станции.
Радиолокационная станция "Небо"


Предназначена для обнаружения, опознавания, измерения трех координат и сопровождения воздушных целей, включая самолеты, изготовленные по технологии "стелс". Применяется в войсках ПВО в составе АСУ или автономно.

РЛС кругового обзора "Небо" располагается на восьми транспортных единицах (на трех полуприцепах - антенно-мачтовое устройство, на двух - аппаратура, на трех прицепах - система автономного энергоснабжения). Имеется выносное устройство, транспортируемое в тарных ящиках.

РЛС работает в метровом диапазоне волн и совмещает функции дальномера и высотомера. В этом диапазоне радиоволн РЛС малоуязвима от снарядов самонаведения и противолокационных ракет, действующих в других диапазонах, а в рабочем диапазоне эти средства поражения в настоящее время отсутствуют. В вертикальной плоскости реализовано (без использования фазовращателей) электронное сканирование высотомерным лучом в каждом элементе разрешения по дальности.

Помехозащищенность в условиях воздействия активных помех обеспечивается адаптивной перестройкой рабочей частоты и многоканальной системой автокомпенсации. Система защиты от пассивных помех также построена на базе корреляционных автокомпенсаторов.

Впервые для обеспечения помехозащищенности в условиях воздействия комбинированных помех реализована пространственно-временная развязка систем защиты от активных и пассивных помех.

Измерение и выдача координат осуществляются с помощью аппаратуры автосъема на базе встроенного спецвычислителя. Имеется автоматизированная система контроля и диагностирования.

Передающее устройство отличается высокой надежностью, которая достигается за счет стопроцентного резервирования мощного усилителя и использования группового твердотельного модулятора.
РЛС "Небо" может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 35 м/с.
Трехкоординатная подвижная обзорная РЛС 1Л117М


Предназначена для наблюдения за воздушным пространством и определения трех координат (азимут, наклонная дальность, высота) воздушных целей. РЛС построена на современных компонентах, обладает высоким потенциалом и низким потреблением энергии. Кроме того, РЛС имеет встроенный запросчик госопознавания и аппаратуру для первичной и вторичной обработки данных, комплект выносного индикаторного оборудования, благодаря чему может быть использована в автоматизированных и неавтоматизированных системах ПВО и Военно-воздушных силах для управления полетами и наведения перехвата, а также для управления воздушным движением (УВД).

РЛС 1Л117М является усовершенствованной модификацией предыдущей модели 1Л117.

Основным отличием усовершенствованной РЛС является использование клистронного выходного усилителя мощности передатчика, что позволило повысить стабильность излучаемых сигналов и, соответственно, коэффициент подавления пассивных помех и улучшить характеристики по низколетящим целям.

Кроме того, благодаря наличию перестройки частоты улучшены характеристики при работе радара в условиях помех. В устройстве обработки радиолокационных данных применены новые типы сигнальных процессоров, усовершенствована система дистанционного управления, контроля и диагностики.

В основной комплект РЛС 1Л117М входят:

Машина № 1 (приемопередающая) состоит из: нижней и верхней антенных систем, четырехканального волноводного тракта с приемо-передающим оборудованием ПРЛ и аппаратурой госопознавания;

Машина № 2 имеет шкаф (пункт) съема и шкаф обработки информации, радиолокационный индикатор с дистанционным управлением;

Машина № 3 перевозит две дизельные электростанции (главную и резервную) и комплект кабелей РЛС;

Машины № 4 и № 5 содержат вспомогательное оборудование (запчасти, кабели, коннекторы, монтажный комплект и т.д.). Они используются также для транспортировки разобранной антенной системы.

Обзор пространства обеспечивается механическим вращением антенной системы, которая образует V-образную диаграмму на-правленности, состоящую из двух лучей, один из которых расположен в вертикальной плоскости, а другой - в плоскости, расположенной под углом 45 к вертикальной. Каждая диаграмма направленности в свою очередь формируется двумя лучами, образованными на разных несущих частотах и имеющими ортогональную поляризацию. Передатчик РЛС формирует два последовательных фазокодоманипулированных импульса на разных частотах, которые посылаются на облучатели вертикальной и наклонной антенн через волноводный тракт.
РЛС может работать в режиме редкой частоты повторения импульсов, обеспечивающей дальность 350 км, и в режиме частых посылок с максимальной Дальностью 150 км. При повышенной частоте вращения (12 оборотов в минуту) используется только частый режим.

Приемная система и цифровая аппаратура СДЦ обеспечивают прием и обработку эхосигналов цели на фоне естественных помех и метеообразований. РЛС обрабатывает эхо-сигналы в "движущемся окне" с фиксированным уровнем ложных тревог и имеет межобзорную обработку для улучшения обнаружения целей на фоне помех.

Аппаратура СДЦ имеет четыре независимых канала (по одному на каждый приемный канал), каждый из которых состоит из когерентной и амплитудной частей.

Выходные сигналы четырех каналов объединяются попарно, в результате чего на экстрактор РЛС подаются нормированные амплитудные и когерентные сигналы вертикального и наклонного лучей.

Шкаф съема и обработки информации получает данные от ПЛР и аппаратуры госопознавания, а также сигналы вращения и синхронизации, и обеспечивает: выбор амплитудного или когерентного канала в соответствии с информацией карты помех; вторичную обработку РЛИ с построением траекторий по данным РЛС, объединение отметок ПРЛ и аппаратуры госопознавания, отображение на экране воздушной обстановки с "привязанными" к целям формулярами; экстраполяцию местоположения цели и прогнозирование столкновений; введение и отображение графической информации; управление режимом опознавания; решение за-дач наведения (перехвата); анализ и отображение метеорологических данных; статистическую оценку работы РЛС; выработку и передачу обменных сообщений на пункты управления.
Система дистанционного контроля и управления обеспечивает автоматическое функционирование радара, управление режимами работы, выполняет автоматический функциональный и диагностический контроль технического состояния оборудования, определение и поиск неисправностей с отображением методики проведения ремонтных и эксплуатационных работ.
Система дистанционного контроля обеспечивает локализацию до 80 % неисправностей с точностью до типового элемента замены (ТЭЗ), в других случаях - до группы ТЭЗов. На экране дисплея рабочего места дается полное отображение характерных показателей технического состояния радиолокационного оборудования в форме графиков, диаграмм, функциональных схем и пояснительных надписей.
Существует возможность передачи данных РЛС по кабельным линиям связи на выносное индикаторное оборудование для управления воздушным движением и обеспечения систем наведения и управления перехватом. РЛС обеспечивается электроэнергией от входящего в комплект поставки автономного источника питания; может также подключаться к промышленной сети 220/380 В, 50 Гц.
Радиолокационная станция "Каста-2Е1"


Предназначена для контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.
Мобильная твердотельная РЛС "Каста-2Е1" может быть использована в различных системах военного и гражданского назначения - противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах.
Отличительные особенности станции:
- блочно-модульное построение;
- сопряжение с различными потребителями информации и выдача данных в аналоговом режиме;
- автоматическая система контроля и диагностики;
- дополнительный антенно-мачтовый комплект для установки антенны на мачте с высотой подъема до 50 м
- твердотельное построение РЛС
- высокое качество выходной информации при воздействии импульсных и шумовых активных помех;
- возможность защиты и сопряжения со средствами защиты от противорадио-локационных ракет;
- возможность определения государственной принадлежности обнаруженных целей.
РЛС включает аппаратную машину, антенную машину, электроагрегат на прицепе и выносное рабочее место оператора, позволяющее управлять РЛС с защищенной позиции на удалении 300 м.
Антенна РЛС представляет собой систему, состоящую из расположенных в два этажа двух зеркальных антенн с облучателями и компенсационных антенн. Каждое зеркало антенны выполнено из металлической сетки, имеет овальный контур (5,5 м х 2,0 м) и состоит из пяти секций. Это дает возможность укладывать зеркала при транспортировке. При использовании штатной опоры обеспечивается положение фазового центра антенной системы на высоте 7,0 м. Обзор в угломестной плоскости осуществляется формированием одного луча специальной формы, по азимуту - за счет равномерного кругового враще-ния со скоростью 6 или 12 об./мин.
Для генерации зондирующих сигналов в РЛС применяется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Приемные устройства осуществляют аналоговую обработку сигналов от трех основных и вспомогательных приемных каналов. Для усиления принятых сигналов используется твердотельный малошумящий СВЧ усилитель с коэффициентом передачи не менее 25 дБ при собственном уровне шума не более 2 дБ.
Управление режимами РЛС осуществляется с рабочего места оператора (РМО). Радиолокационная информация отображается на координатно-знаковом индикаторе с диаметром экрана 35 см, а результаты контроля параметров РЛС - на таблично-знаковом индикаторе.
РЛС "Каста-2Е1" сохраняет работоспособность в интервале температур от -50 °С до +50 °С в условиях атмосферных осадков (иней, роса, туман, дождь, снег, гололед), ветровых нагрузок до 25 м/с и расположения РЛС на высоте до 2000 м над уровнем моря. РЛС может работать непрерывно в течение 20 суток.
Для обеспечения высокой готовности РЛС имеется резервируемая аппаратура. Кроме того, в комплект РЛС включены запасное имущество и принадлежности (ЗИП), рассчитанные на год эксплуатации РЛС.
Для обеспечения готовности РЛС в пределах всего срока службы отдельно поставляется групповой ЗИП (1 комплект на 3 РЛС).
Средний ресурс РЛС до капитального ремонта 1 15 тыс. часов; средний срок службы до капитального ремонта - 25 лет.
РЛС "Каста-2Е1" обладает высокой модернизационной способностью в части улучшения отдельных тактико-технических характеристик (увеличение потенциала, уменьшение объема аппаратуры обработки, средств отображения, увеличение производительности, сокращение времени развертывания и свертывания, повышение надежности и др.). Возможна поставка РЛС в контейнерном варианте с использованием цветного дисплея.
Радиолокационная станция "Каста-2Е2"


Предназначена для контроля воздушного пространства, определения дальности, азимута, эшелона высоты полета и трассовых характеристик воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, в том числе летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидро-метеообразований. Маловысотная трехкоординатная РЛС кругового обзора дежурного режима "Каста-2Е2" применяется в системах противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах. Легко адаптируется к использованию в различных системах гражданского назначения.

Отличительные особенности станции:
- блочно-модульное построение большинства систем;
- развертывание и свертывание штатной антенной системы с помощью автоматизированных электромеханических устройств;
- полностью цифровая обработка информации и возможность передачи ее по телефонным каналам и радиоканалу;
- полностью твердотельное построение передающей системы;
- возможность установки антенны на легкой высотной опоре типа "Унжа", обеспечивающей подъем фазового центра на высоту до 50 м;
- возможность обнаружения малоразмерных объектов на фоне интенсивных мешающих отражений, а также зависших вертолетов при одновременном обнаружении движущихся объектов;
- высокая защищенность от несинхронных импульсных помех при работе в плотных группировках радиоэлектронных средств;
- распределенный комплекс вычислительных средств, обеспечивающий автоматизацию процессов обнаружения, сопровождения, измерения координат и опознавания государственной принадлежности воздушных объектов;
- возможность выдачи радиолокационной информации потребителю в любой удобной для него форме - аналоговой, цифро-аналоговой, цифровой координатной или цифровой трассовой;
- наличие встроенной системы функционально-диагностического контроля, охватывающего до 96 % аппаратуры.
РЛС включает в себя аппаратную и антенную машины, основную и резервную электростанции, смонтированные на трех автомобилях повышенной проходимости КамАЗ-4310. Имеет выносное рабочее место оператора, обеспечивающее управление РЛС, удаленное от нее на расстояние 300 м.
Конструкция станции устойчива к воздействию избыточного давления во фронте ударной волны, оснащена устройствами санитарной и индивидуальной вентиляции. Предусмотрена работа системы вентиляции в режиме рециркуляции без использования заборного воздуха.
Антенна РЛС представляет собой систему, состоящую из зеркала двойной кривизны, узла рупорных облучателей и антенн подавления приема по боковым лепесткам. Антенная система формирует по основному радиолокационному каналу два луча с горизонтальной поляризацией: острый и косекансный, перекрывающие заданный сектор обзора.
В РЛС используется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Управление режимами РЛС может производиться как по командам оператора, так и использованием возможностей комплекса вычислительных средств.
РЛС обеспечивает устойчивую работу при температуре окружающего воздуха ±50 °С, относительной влажности воздуха до 98 %, скорости ветра до 25 м/с. Высота размещения над уровнем моря - до 3000 м. Современные технические решения и элементная база, примененные при создании РЛС "Каста-2Е2", позволили получить тактико-технические характеристики на уровне лучших зарубежных и отечественных образцов.

Всем спасибо за внимание:)

Развитие современной радиолокации является отражением развития передающих устройств

Андрей Ремезов ,

полковник, кандидат технических наук, доцент, заместитель начальника кафедры тактики и вооружения радиотехнических войск Военной академии воздушно-космической обороны им. Маршала Советского Союза Г. К. Жукова

Развитие передающих устройств существенным образом повлияло на развитие радиолокации (хотя можно заявить и обратное – развитие радиолокации потребовало разработки новых передающих устройств). Определенные ограничения имеющихся источников электромагнитной энергии при конструировании РЛС с требуемыми характеристиками вызвали к жизни радиолокаторы с фазированными антенными решетками, что привело к возникновению новых свойств РЛС.

Все разнообразие активных радиолокаторов (излучающих электромагнитную энергию для получения информации об объектах) условно можно разделить по виду используемого сигнала на импульсные (импульсные сигналы различной формы, структуры и мощности) и непрерывные (используются непрерывные синусоидальные колебания, в том числе модулированные по частоте или фазе для измерения дальности). Наибольшее применение получили импульсные радиолокаторы, о них и будет идти разговор.

Принцип работы импульсного радиолокатора упрощенно можно описать следующим образом. Сформированный по виду и форме, усиленный до требуемой мощности импульсный сигнал на определенной частоте излучается в заданную область пространства посредством передающей антенны в виде поляризованной электромагнитной волны, распространяющейся в свободном пространстве прямолинейно и равномерно со скоростью света.

Отраженная от любой неоднородности электромагнитная волна распространяется во все стороны, в том числе и в сторону радиолокатора. После пространственно-частотно-поляризационной обработки в приемной антенне (только на заданной частоте и виде поляризации формируется диаграмма направленности с максимумом усиления из заданной области пространства) осуществляется внутрипериодная обработка и согласованная фильтрация (максимизирующая отношение сигнал/шум для априори известного конкретного вида излученного импульсного сигнала), после чего осуществляется само обнаружение отраженного сигнала как факт его превышения над сформированным порогом.

Далее осуществляется межпериодная обработка, обнаружение отметки от объекта и определение его координат, после чего осуществляется преобразование к виду, требуемому для отображения на различного рода индикаторах и заданному потребителем. При последующей межобзорной обработке осуществляется определение параметров движения объекта (курс и скорость), опознавание, распознавание, формирование и сопровождение трасс, отождествление отметок от других объектов, группирование объектов, привязка к трассе другой информации от различных источников. Указанные рассуждения справедливы для радиолокаторов с регулярным круговым обзором, для других видов обзора (секторный, адаптивный и др.), суть не меняется, изменяются частности.

Одним из основных параметров радиолокатора является максимальная дальность обнаружения объекта с заданной ЭПР. А она зависит от возможностей передающего устройства по генерированию импульсной мощности.

Именно потребность в генерировании больших импульсных мощностей (десятки и сотни кВт, единицы МВт), достижении средних мощностей в единицы и десятки кВт, позволяет говорить об отражении эволюции развития передающих устройств (в том числе технологии их промышленного изготовления) на основные тактико-технические характеристики РЛС, на возможные для использования в радиолокации диапазоны волн.

Следует оговориться, что в РЛС с регулярным обзором, количество накапливаемых сигналов при когерентном межобзорном накоплении ограничено частотой запуска передатчика и скоростью обзора заданной области пространства. При достаточно больших временах когерентного накопления требования по импульсной мощности могут быть снижены, появятся дополнительные возможности доплеровской фильтрации и разделения по скоростям движения, но это частный случай, который не противоречит общей идее.

Леонид ЯКУТИН

Радиолокационный комплекс боевого режима 5Н87 с автономным наземным радиозапросчиком (НРЗ) системы Государственного опознавания «Пароль» 73Е6

В данном материале также не будут впрямую оцениваться возможности цифровой первичной и вторичной обработки информации. Эволюция этого раздела радиолокации происходила практически по революционному сценарию, при котором за время жизненного цикла изделия даже уже на этапе заводских и государственных испытаниях, не говоря уже об этапе серийного производства и модернизации, заданные требования неоднократно превышались за счет возрастающих возможностей вычислительных средств.

За 30-40 лет от создания первого микропроцессора до появления современных вычислительных комплексов возможности цифровой первичной и вторичной обработки информации на РЛС возросли на несколько порядков, что позволяет в настоящее время практически не задумываться над их производительностью для решения прикладных задач в РЛС. Однако это совсем другая сторона истории развития современной радиолокации.

Итак, развитие радиолокации напрямую зависит от развития источников высокочастотной электромагнитной энергии.

Основная посылка при рассмотрении данного утверждения в том, что дальность обнаружения в основном зависит от мощности передающего устройства.

При проектировании радиолокатора любого класса анализируются потенциальные возможности достижения заданных тактико-технических требований. Для маловысотной радиолокации имеется небольшое послабление: требуемая дальность обнаружения ограничена дальностью прямой видимости на определенной высоте. Для этого класса РЛС можно ограничить мощность передающего устройства, что позволяет снизить габариты и вес самой станции, сделать ее более мобильной, использовать базовые автомобильные шасси меньшей грузоподъемности.

Для станций, предназначенных для обнаружения целей на средних и больших высотах, дальность прямой видимости составляет сотни километров и более, а для удвоения дальности обнаружения при прочих равных условиях необходимо увеличивать мощность в шестнадцать раз. Поэтому для данного класса РЛС определяется, как правило, разумный компромисс между мощностью передающего устройства (а это габариты и масса всей станции, а значит надежность, мобильность и живучесть) и достижимой дальностью обнаружения D заданного класса целей.

Импульсная радиолокация оперирует понятиями импульсной и средней мощностью, скважностью, которые связывают между собой понятия длительности импульса и периода повторения. Для любого передающего устройства наиболее важным понятием является средняя мощность, при которой передающее устройство функционирует с требуемой надежностью.

Поэтому выбор передающего устройства с требуемыми характеристиками определяет структуру построения всей станции, реализацию режимов ее боевого применения.

До начала 1940-х годов не существовало мощных и компактных источников электромагнитной энергии в сантиметровом и дециметровом диапазоне волн. Это и определило развитие радиолокации преимущественно метрового диапазона волн. В качестве передающего устройства применялся автогенератор на электровакуумной лампе, который мог генерировать весьма ограниченный перечень импульсных сигналов, отличающийся, как правило, только длительностью. В качестве колебательных систем использовался коаксиальный резонатор, перестройка по частоте достигалась электромеханическим изменением размеров резонатора (время перестройки – до десятков секунд).

Леонид ЯКУТИН

Подвижная трехкоординатная РЛС СТ­68 для обнаружения и сопровождения маловысотных целей в активных и пассивных помехах при наличии интенсивных отражений от земли и в сложных метеоусловиях

Автогенератор не обладает возможностью формирования сложных сигналов (способных при обработке сжиматься до определенной длительности, а это разрешающая способность по дальности), начальная фаза колебаний каждого импульса случайная (возможности когерентной обработки весьма ограничены). Основные достоинства автогенератора – относительная простота и дешевизна.

Для реализации больших дальностей при заданной точности необходимо использовать сложный сигнал с внутриимпульсной модуляцией частоты или фазы, а для его реализации усилительную цепочку из нескольких (как привило 2-3) каскадов последовательно включенных усилителей мощности. При увеличении габаритов и массы передающего устройства и всей РЛС в целом, значительно увеличивается достижимый коэффициент подавления пассивных помех и местных предметов за счет возможности формирования и дальнейшей обработки последовательности сигналов с истинной внутренней когерентностью.

В метровом диапазоне волн относительно недавно появились полностью твердотельные полупроводниковые усилители мощности. До этого наиболее совершенные передающие устройства этого диапазона волн были реализованы на электровакуумных приборах – эндотронах, конструктивно объединенных общей колебательной системой и системой охлаждения, и включающих в свой состав несколько каскадов усилителей на лампах сверхвысоких частот (СВЧ) (триодах, тетродах). Относительно невысокий КПД каждого каскада усиления при реализации достаточны высоких требований к результирующим параметрам всего усилительного устройства в целом делал эндотрон довольно громоздким элементом с недостаточным ресурсом, что требовало его резервирования.

Радиолокации метрового диапазона волн присущи некоторые недостатки, основным из которых является невозможность получения высоких разрешающих способностей по угловым координатам, а значит и по высоте. Это ограничивается возможностями антенных систем. Для получения диаграммы направленности шириной 1 угловой градус по уровню половинной мощности размер апертуры антенны должен составлять от 50 до 80 длин волн λ, что при рабочей частоте 180 МГц (λ=1,7 м) составляет от 85 до 140 м.

Антенные системы такого размера для нормального функционирования в режиме регулярного обзора непригодны, так как имеют неприемлемую массу и парусность, опорные подшипники чрезвычайно нагружены и имеют повышенный износ, для регулярного вращения необходима мощность в несколько десятков кВт (повторюсь, что рассматриваются только радиолокационные станции кругового обзора).

Указанное ограничивает размеры антенн до 30 м и реализуемую ширину диаграммы направленности в пределах 3-4 угловых градусов. При таких значениях параметров антенной системы говорить о точности измерения углов места (определения высоты) не приходится. Высота определяется с большими ошибками и не может использоваться в большинстве практических приложений. (РЛС метрового диапазона волн с возможностью измерения высоты имеют специальные выделенные каналы измерения, размеры которых в вертикальной плоскости соизмеримы с размерами основной антенны в горизонтальной плоскости).

Формирование диаграммы направленности антенной системы для этого диапазона волн в угломестной плоскости происходит с учетом отраженной от земной поверхности энергии. В результате интерференции результирующая диаграмма направленности имеет ярко выраженный лепестковых характер, с провалами практически до нулевой дальности и максимумами с практически удвоенной дальностью под определенными углами места.

Для устранения лепесткового характера результирующей диаграммы направленности применяют несколько разнесенных по высоте облучателей (не менее 2-х), формирующих диаграммы направленности с взаимной компенсацией минимумов и максимумов.

Другой способ применяется при наличии большего количества разнесенных по высоте излучателей, между ними реализуется специального вида амплитудно-фазовое распределение, в результате чего добиваются требуемой формы диаграммы направленности.

Еще одним способом избавиться от негативного влияния отражений в этом диапазоне является исключение облучения в направлении земли, то есть «ноль» диаграммы направленности в угломестной плоскости не должен при сканировании опускаться ниже горизонта. Все это не позволяет определять высоту под малыми углами места с необходимой точностью, хотя дальность обнаружения маловысотных объектов в этом диапазоне волн соизмерима с дальностью их прямой видимости.

За исключением указанных выше сложностей получения информации РЛС в метровом диапазоне все остальное можно поставить в плюсы. Большая дальность обнаружения, меньшие затухания в атмосфере, большая и более сглаженная диаграмма обратного вторичного излучения (функциональная зависимость ЭПР объекта от ракурса его облучения) с меньшим уровнем случайных флуктуаций, практически отсутствие влияния технологий малой радиолокационной заметности на дальность обнаружения.

И все же невозможность получения координат объектов с высокой точностью, прежде всего угла места и высоты, с приемлемым для эксплуатации размером антенной системы, требует использовать более коротковолновые диапазоны волн. Только отсутствие мощных и компактных источников электромагнитной энергии в этих диапазонах сдерживало развитие радиолокации.

Георгий Данилов

РЛС 5Н69 (СТ­67) – мощная трехкоординатная высокопотенциальная РЛС, способная обеспечивать информацией как зенитные ракетные войска, так и авиацию в условиях массированного применения активных и пассивных помех

Начало 1940-х годов открыло новую эру радиолокации сантиметрового и дециметрового диапазонов волн появлением магнетрона. Магнетрон является электровакуумным резонансным устройством, работающим в скрещенных электрических и магнитных полях. Магнетрон является автогенератором, частота настройки зависит от объема резонаторной камеры и меняется изменением этого объема или изменением напряжения питания, количество резонаторов в камере всегда четное.

Достаточно простой и мощный источник электромагнитной энергии (импульсная мощность для типового магнетрона достигает единиц МВт при длительности единиц мкс) долгое время оставался основным типом передающего устройства для РЛС диапазона частот более 2 ГГц. Прежде всего простота и стоимость этого прибора при достижении достаточной мощности позволяли ему доминировать на протяжении более 40 лет в РЛС военного назначения. Для РЛС гражданского назначения магнетрон вполне может быть использован и в настоящее время.

Повышение требований к помехозащищенности, дальности обнаружения, электромагнитной совместимости повлияли на отказ от магнетронов в абсолютном большинстве современных РЛС военного назначения.

Практически одновременно (по некоторым источникам и ранее) был изобретен пролетный клистрон. Однако его применение в радиолокации несколько задержалось.

Клистрон является электровакуумным прибором с линейным пучком, в котором постоянное электрическое поле, ускоряющее электронный пучок, совпадает с осью магнитного поля, которое фокусирует и ограничивает электронный пучок. Для усиления высококонцентрированного линейного пучка электронов используются микроволновые резонаторы.

Принципиальным отличием является непрерывное взаимодействие СВЧ поля и электронного пучка, проходящего через замедляющую структуру. Стоимость ЛБВ выше, чем пролетного клистрона с аналогичными характеристиками. Интересным свойством усилительной ЛБВ является генерация шумов полной мощности во всей полосе частот при недостаточном уровне входной мощности, что позволяет использовать этот электровакуумный прибор в качестве простого и мощного источника шумовых колебаний в отдельных практических приложениях.

Еще одним СВЧ прибором является усилитель со скрещенными полями, имеющий колебательную систему, подобную магнетрону, разомкнутую для обеспечения входных и выходных соединений, работает в режиме усилителя мощности, в литературе встречается под названием амплитрон. Он имеет более высокий КПД (более 50%), меньший чем у пролетного клистрона и ЛБВ подобного класса коэффициент усиления (менее 20 db), при включении без ВЧ возбуждения генерирует шум полной мощности. Для работы амплитрона требуются более низкое, чем для ЛБВ и клистронов напряжение, амплитрон меньше по габаритам и массе. Может использоваться в качестве оконечного каскада усиления в сочетании с ЛБВ или клистроном.

Одним из недостатков мощных вакуумных СВЧ автогенераторов и усилителей мощности является необходимость высоковольтного модулятора, требования к параметрам вырабатываемого импульса иногда весьма жесткие и тяжело реализуемые, особенно для коротких (менее 1 мкс) и длинных (более 100 мкс) импульов. Указанное вызвано неизбежным спадом амплитуды модулирующего импульса на его длительности, что сказывается на качестве усиления всего каскада и требует применения специальных мер стабилизации параметров модулирующего импульса, что при высоких мощностях вызывает определенные трудности в реализации и при эксплуатации.

Указанное выше ограничивает применение электровакуумных СВЧ приборов в отдельных практических приложениях, а иногда делает их применение практически невозможным. Определенные ограничения накладываются пропускной возможностью мощных высокочастотных трактов при передаче энергии от передающего устройства к передающей антенной системе.

Георгий Данилов

Подвижная трехкоординатная РЛС «Десна­-М» и два высотомера типа ПРВ­13 на полигоне Ашулук

Появление в середине ХХ века полупроводниковых устройств-транзисторов, открыло новую эру радиоэлектроники. Однако до начала XXI века не существовало передающих устройств в полностью твердотельном исполнении, даже несмотря на существенные их преимущества перед вакуумными устройствами, среди которых можно назвать следующие:

время готовности снизу не ограничивается временем нагрева катода, для которого требуется определенная мощность, нет ограничения на время эксплуатации;

работа при значительно меньших уровнях напряжения (сотни вольт, а не десятки киловольт), что позволяет уменьшать габариты и массу, не требует применения для изоляции специальных материалов и масел, нестандартных деталей;

наработка на отказ значительно превышает аналогичный показатель для вакуумных устройств с аналогичными характеристиками;

невозможность получения от одного каскада требуемой мощности приводит к необходимости их группирования, что само по себе повышает надежность всего устройства в целом, так как отказ одного каскада приводит лишь к некоторой деградации, а не к отказу всего устройства в целом, кроме того, пиковые мощности относительно низкие, так как суммирование может происходить в пространстве, что позволяет использовать маломощные переключатели передача-прием для активных фазированных антенных решеток (АФАР);

широкополосность твердотельного передающего устройства в разы превосходит аналогичные показатели вакуумного СВЧ устройства, в связке твердотельное передающее устройство — антенная система — приемное устройство наименьшей полосой пропускания обладает антенная система, тогда как при использовании вакуумного передающего устройства ограничения возникают и на уровне самого передающего устройства.

Применение твердотельных передающих устройств возможно в нескольких направлениях.

Первое – замена вакуумного передающего устройства на аналогичное твердотельное для уже разработанной, выпускаемой серийно и находящейся в эксплуатации станции. В этом случае сталкиваются с необходимостью дополнительного изменения приемной системы и системы обработки информации, так как для сохранения требуемой дальности необходима средняя мощность при разрешающей способности сигнала по дальности.

Это достигается применением больших по длительности сигналов с фазовой или частотной внутриимпульсной модуляцией при относительно невысоких пиковых мощностях. Недостатки больших по длительности сигналов – большая мертвая зона.

Выход – формирование повторно в течении периода повторения сигнала для просмотра ближней мертвой зоны (на время длительности импульсного сигнала просмотра основной дальности). Так как просматривается ближняя зона, то энергетические показатели импульса могут быть снижены, может применяться сигнал с другим видом или законом внутриимпульсной модуляции.

Фактическая реализация такого решения часто не дает преимуществ, кроме надежности, однако замена автогенератора позволяет значительно повысить многие характеристики станции, прежде всего помехозащищенность от различного типа помех и разрешающую способность по дальности.

Второе направление – разработка новой станции под твердотельное передающее устройство. В этом случае возможен выбор между основными элементами станции, в том числе применение ФАР, элементы которой сами являются передающими устройствами.

Могут применяться варианты полностью активной ФАР на передачу (каждый излучающий элемент антенны запитан от отдельного модуля передатчика), полуактивной ФАР (модуль передатчика запитывает несколько элементов или подрешеток), пассивной ФАР (один общий передатчик), комбинированные варианты (одноканальный задающий генератор – проходная активная, полуактивная ФАР с оптической запиткой).

Аналогичные решения применимы для приемной части ФАР. Возможно разнесение передающей и приемной частей ФАР, что в некоторых случаях позволяет добиваться лучших результатов из-за необходимости получения требуемой развязки между мощным импульсом передающего устройства и высокой чувствительностью приемного устройства. Кроме того, управление лучом за счет изменения фаз на каждом из элементов возможно на более низком уровне, что позволяет избежать потерь мощности в фазовращателях, повышает общий КПД и надежность свей ФАР в целом.

Однако не стоит уповать на ФАР, как на панацею от всех недостатков классической радиолокации с зеркальной антенной системой. Применение твердотельных передатчиков в АФАР накладывает достаточно жесткие требования к идентичности амплитудных и фазовых характеристик элементов АФАР, особенно при больших углах электронного сканирования.

Повышенные требования предъявляются к стабильности питающих напряжений передающих модулей. При достижении определенных мощностей начинает сказываться взаимное влияние соседних передающих элементов, что не позволяет бесконечно увеличивать их мощность. Да и КПД твердотельного передающего модуля не повышается, что приводит к необходимости жесткой температурной стабилизации. Применение приемно-передающих модулей (ППМ) при достаточно высокой выходной мощности передающей подсистемы обнажает проблему развязки приемного и передающего трактов, выполненных в микроминиатюрном исполнении. Различного рода циркуляторы позволяют достичь уровня развязки порядка 20 db или чуть более, требуются дополнительные устройства защиты приемного тракта, что также требует принудительного охлаждения и не повышает надежность ППМ в целом. Все вместе взятое приводит достаточно громоздким конструкциям, высокой стоимости и недостаточной надежности ФАР (при всех имеющихся преимуществах). Применение ФАР, и особенно АФАР, должно преследовать определенные цели, быть экономически обоснованным на весь жизненный цикл РЛС с возможными модернизациями. Из РЛС с ФАР необходимо извлекать всю возможную информацию, получение которой возможно на алгоритмическом уровне при обработке в цифровой форме.

Стоит заметить, что излучаемая импульсными РЛС высокочастотная энергия используется недостаточно эффективно. Можно вспомнить принцип обнаружения объекта, суть которого в том, что электромагнитная волна отражается от неоднородности во все стороны, в том числе и в направлении облучения (что используется в классической радиолокации).

Леонид ЯКУТИН

П­18 «Терек» – мобильная двухкоординатная радиолокационная станция кругового обзора
метрового диапазона волн

Вся остальная энергия электромагнитной волны рассеивается в пространстве. Возможно получение информации об объектах за счет приема переотраженной электромагнитной волны. При этом необходимым условием является наличие точной информации о частоте и времени зондирования, области пространства, в которое излучается априори известный сигнал, взаимном расположении активной и приемной позиций.

В этом случае возможно сформировать пространственно-временные дискретные каналы приема полностью пассивной станции, которая не подвержена радиоэлектронному подавлению преднамеренной постановкой активных помех (нет демаскирующих разведывательных признаков), имеет невысокую потребляемую мощность (передающее устройство потребляет 50% и более всей подводимой мощности).

Разнесенные в пространстве активные РЛС в совокупности с пассивными приемными позволяют при совместной обработке информации получить помехоустойчивое радиолокационное поле как область пространства, в пределах которого возможно получение радиолокационной информации об объектах.

Активная РЛС может выступать в качестве пункта совместной обработки информации, в котором своя информация (но подверженная радиоэлектронному подавлению) может дополняться информацией пассивной (одной или нескольких) не подверженных радиоэлектронному подавлению станций. Совместная обработка информации от разнесенных в пространстве активных и пассивных источников позволяет осуществлять более детальное распознавание строев (количество объектов локации) и классов объектов. И хотя это несколько другая предметная область, но именно наличие ФАР в активной и пассивной станции позволяет получить заявленный синергетический эффект.

Таким образом, можно сделать вывод о том, что развитие передающих устройств существенным образов повлияло на развитие радиолокации (хотя можно заявить и обратное – развитие радиолокации потребовало разработки новых передающих устройств). Определенные ограничения имеющихся источников электромагнитной энергии при конструировании РЛС с требуемыми характеристиками вызвали к жизни радиолокаторы с фазированными антенными решетками, что привело к возникновению новых свойств РЛС.

Автор не претендует на приоритет и полноту приведенных рассуждений, это, скорее всего, результат многолетней работы в области изучения и преподавания радиолокации и радиолокационной системотехники, а также эксплуатации радиолокационных станций радиотехнических войск более 30 лет.

Радиолокация до конца не познана и не будет познана. Развитие современной науки и технологии позволит извлекать значительно больше информации из существующих радиолокационных сигналов, чем имеется в настоящее время, не говоря уже об потенциальной информативности перспективных сигналов в различных диапазонах волн.

Леонид ЯКУТИН

Подвижный радиовысотомер ПРВ­13 предназначен для работы в качестве средства измерения высоты в составе радиолокационного комплекса 5Н87

Юрий МУХИН

РЛС П­37 ­ подвижная двухкоординатная радиолокационная станция кругового обзора

РЛС состоит из следующих основных элементов:

Передающее устройство;

Приемное устройство;

Антенный коммутатор и антенное устройство;

Оконечное устройство;

Синхронизатор.

Структурная схема РЛС показана на рис.5.2.

Рис.5.2 Структурная схема радиолокационной станции.

Передающее устройство РЛС предназначено для формирования зондирующего сигнала и передачи его в антенну.

Приемное устройство РЛС предназначено для предварительной обработки отраженного сигнала, принятого антенной. Оно осуществляет выделение полезного сигнала из смеси сигнала и помех, преобразование радиосигнала в видеосигнал и передачу его в оконечное устройство.

Антенный коммутатор предназначен для подключения передатчика к антенне при излучении зондирующего сигнала и подключения приемника к антенне при приеме отраженного сигнала.

Оконечное устройство для анализа полезного сигнала. Тип оконечного устройства зависит от вида сигнала (аналоговый или цифровой), получателя радиолокационной информации (оператор, устройство автоматического определения координат, ЭВМ и т.д.) и типа радиолокационной информации.

Синхронизатор обеспечивает заданную последовательность работы элементов РЛС. Так, например, в наиболее распространенных РЛС с импульсным режимом работы синхронизатор выполняет следующие функции:

Согласование момента формирования зондирующего импульса с моментом запуска временной развертки индикатора или нулевым отсчетом вычислительного устройства;

Согласование положения диаграммы направленности антенны в пространстве с разверткой индикатора или нулевым отсчетом вычислительного устройства;

Определение момента открытия приемника и интервала его работы.

При этом принципиально возможны следующие способы синхронизации:

1. Синхронизация от передатчика к оконечному устройству.

В таких РЛС момент формирования зондирующего импульса определяет момент запуска временной развертки индикатора или момент обнуления вычислительного устройства. Достоинство такого способа синхронизации состоит в том, что нестабильность частоты следования зондирующих импульсов передатчика не влияет на точность радиолокационных измерений. Однако таким РЛС свойственна нестабильность запуска оконечного устройства, которую полностью устранить трудно.

2. Синхронизация от оконечного устройства к передатчику.

В этом случае работой оконечного и передающего устройства управляет высокостабильный генератор, входящий в состав оконечного устройства. Благодаря этому достигается высокая точность радиолокационных измерений. Однако возникают проблемы при изменении частоты следования зондирующих импульсов.


3. Синхронизация с помощью отдельного высокостабильного кварцевого генератора, не входящего в состав передающего или оконечного устройства.

Такой способ синхронизации применяют в большинстве современных РЛС, которые обычно предусматривают возможность изменения частоты следования зондирующих импульсов в процессе работы станции. Это необходимо для обеспечения помехозащищенности РЛС при работе в условиях пассивных или активных радиолокационных помех.

Структурная схема РЛС в основном зависит от ее назначения, типа зондирующего сигнала (импульсный или непрерывный) и модулируемого параметра радиосигнала.

Однако в общем случае процедура обработки радиосигнала в РЛС должна быть согласована не только с типом зондирующего сигнала, но и с видом помех. Поэтому структурная схема РЛС должна учитывать источники активных и пассивных радиоэлектронных помех.

Эта задача усложняет работу любой РЛС, т.к. помехи вызывают искажение отраженного от цели сигнала и ведут к потере полезной радиолокационной информации. Поэтому в процессе обработки отраженного сигнала стремятся подавить помехи, что достигается введением в состав структурной схемы РЛС устройств защиты от радиоэлектронных помех.

Радиолокация - это совокупность научных методов и технических средств, служащих для определения координат и характеристик объекта посредством радиоволн. Исследуемый объект часто именуют радиолокационной целью (или просто целью).

Радиотехническое оборудование и средства, предназначенные для выполнения задач радиолокации, получили название радиолокационных систем, или устройств (РЛС или РЛУ). Основы радиолокации базируются на следующих физических явлениях и свойствах:

  • В среде распространения радиоволны, встречая объекты с иными электрическими свойствами, рассеиваются на них. Волна, отраженная от цели (или ее собственное излучение), позволяет радиолокационным системам обнаружить и идентифицировать цель.
  • На больших расстояниях распространение радиоволн принимается прямолинейным, с постоянной скоростью в известной среде. Это допущение делает возможным до цели и ее угловых координат (с определенной ошибкой).
  • На основании эффекта Доплера по частоте принятого отраженного сигнала вычисляют радиальную скорость точки излучения относительно РЛУ.

Историческая справка

На способность радиоволн к отражению указывали великий физик Г. Герц и русский электротехник еще в конце XIX века. Согласно патенту от 1904 года, первый радар создал немецкий инженер К. Хюльмайер. Прибор, названный им телемобилоскопом, использовался на судах, бороздивших Рейн. В связи с развитием применение радиолокации выглядело очень перспективным в качестве элемента Исследования в этой области велись передовыми специалистами многих стран мира.

В 1932 году основной принцип радиолокации описал в своих работах научный сотрудник ЛЭФИ (Ленинградского электрофизического института) Павел Кондратьевич Ощепков. Им же в сотрудничестве с коллегами Б.К. Шембель и В.В. Цимбалиным летом 1934 года был продемонстрирован опытный образец радиолокационной установки, обнаружившей цель на высоте 150 м при удалении 600 м. Дальнейшие работы по совершенствованию средств радиолокации сводились к увеличению дальности их действия и повышению точности определения местоположения цели.

Природа электромагнитного излучения цели позволяет говорить о нескольких видах радиолокации:

  • Пассивная радиолокация исследует собственное излучение (тепловое, электромагнитное и т.п.), которое генерирует цели (ракеты, самолеты, космические объекты).
  • Активная с активным ответом осуществляется в случае, если объект оборудован собственным передатчиком и взаимодействие с ним происходит по алгоритму "запрос - ответ".
  • Активная с пассивным ответом предполагает исследование вторичного (отраженного) радиосигнала. в этом случае состоит из передатчика и приемника.
  • Полуактивная радиолокация - это частный случай активной, в случае когда приемник отраженного излучения расположен вне РЛС (например, является конструктивным элементом самонаводящейся ракеты).

Каждому виду свойственны свои достоинства и недостатки.

Методы и оборудование

Все средства радиолокации по используемому методу разделяют на РЛС непрерывного и импульсного излучения.

Первые содержат в своем составе передатчик и приемник излучения, действующие одновременно и непрерывно. По этому принципу были созданы первые радиолокационные устройства. Примером такой системы могут служить радиоальтиметр (авиационный прибор, определяющий удаление летательного аппарата от поверхности земли) или известный всем автолюбителям радар для определения скоростного режима транспортного средства.

При импульсном методе электромагнитная энергия излучается короткими импульсами в течение нескольких микросекунд. После станция ведет работу только на прием. После улавливания и регистрации отраженных радиоволн РЛС передает новый импульс и циклы повторяются.

Режимы работы РЛС

Существует два основных режима функционирования радиолокационных станций и устройств. Первый - сканирование пространства. Он осуществляется по строго заданной системе. При последовательном обзоре перемещение луча радара может носить круговой, спиральный, конический, секторный характер. Например, решетка антенны может медленно поворачиваться по кругу (по азимуту), одновременно сканируя по углу места (наклоняясь вверх и вниз). При параллельном сканировании обзор осуществляется пучком радиолокационных лучей. Каждому соответствует свой приемник, ведется обработка сразу нескольких информационных потоков.

Режим слежения подразумевает постоянную направленность антенны на выбранный объект. Для ее поворота, согласно с траекторией движущейся цели, используются специальные автоматизированные следящие системы.

Алгоритм определения дальности и направления

Скорость распространения электромагнитных волн в атмосфере составляет 300 тыс. км/с. Поэтому, зная время, затраченное транслируемым сигналом на преодоление расстояния от станции до цели и обратно, легко вычислить удаленность объекта. Для этого необходимо точно зафиксировать время отправки импульса и момент принятия отраженного сигнала.

Для получения информации о местонахождении цели используется остронаправленная радиолокация. Определение азимута и элевации (угла места или возвышения) объекта производится антенной с узким лучом. Современные РЛС используют для этого фазированные антенные решетки (ФАР), способные задавать более узкий луч и отличающиеся высокой скоростью вращения. Как правило, процесс сканирования пространства совершается минимум двумя лучами.

Основные параметры систем

От тактических и технических характеристик оборудования во многом зависит эффективность и качество решаемых задач.

К тактическим показателям РЛС причисляют:

  • Зону обзора, ограниченную минимальной и максимальной дальностью обнаружения цели, допустимым азимутальным углом и углом возвышения.
  • Разрешающую способность по дальности, азимуту, элевации и скорости (возможность определять параметры рядом расположенных целей).
  • Точность измерений, которая измеряется наличием грубых, систематических или случайных ошибок.
  • Помехозащищенность и надежность.
  • Степень автоматизации извлечения и обработки поступающего потока информационных данных.

Заданные тактические характеристики закладываются при проектировании устройств посредством определенных технических параметров, среди которых:

На боевом посту

Радиолокация - это универсальный инструмент, получивший широкое распространение в военной сфере, науке и народном хозяйстве. Области использования неуклонно расширяются благодаря развитию и совершенствованию технических средств и технологий измерений.

Применение радиолокации в военной отрасли позволяет решить важные задачи обзора и контроля пространства, обнаружения воздушных, наземных и водных мобильных целей. Без радаров невозможно представить оборудование, служащее для информационного обеспечения навигационных систем и систем управления орудийным огнем.

Военная радиолокация является базовой составляющей стратегической системы предупреждения о ракетном нападении и комплексной противоракетной обороны.

Радиоастрономия

Посланные с поверхности земли радиоволны также отражаются от объектов в ближнем и дальнем космосе, как и от околоземных целей. Многие космические объекты невозможно было полноценно исследовать лишь с использованием оптических инструментов, и только применение радиолокационных методов в астрономии позволило получить богатую информацию об их природе и структуре. Впервые пассивная радиолокация для исследования Луны была применена американскими и венгерскими астрономами в 1946 году. Примерно в то же время были случайно приняты и радиосигналы из космического пространства.

У современных радиотелескопов приемная антенна имеет форму большой вогнутой сферической чаши (подобно зеркалу оптического рефлектора). Чем больше ее диаметр, тем более слабый сигнал антенна сможет принять. Часто радиотелескопы работают комплексно, объединяя не только устройства, расположенные недалеко друг от друга, но и находящиеся на разных континентах. Среди важнейших задач современной радиоастрономии - изучение пульсаров и галактик с активными ядрами, исследование межзвездной среды.

Гражданское применение

В сельском и лесном хозяйстве радиолокационные устройства незаменимы при получении информации о распределении и плотности растительных массивов, изучении структуры, параметров и видов почв, своевременном обнаружении очагов возгораний. В географии и геологии радиолокация используется для выполнения топографических и геоморфологических работ, определения структуры и состава пород, поиска месторождений полезных ископаемых. В гидрологии и океанографии радиолокационными методами осуществляется контроль состояния главных водных артерий страны, снегового и ледяного покрова, картографирование береговой линии.

Радиолокация - это незаменимый помощник метеорологов. РЛС легко выяснит состояние атмосферы на удалении десятков километров, а по анализу полученных данных составляется прогноз изменения погодных условий в той или иной местности.

Перспективы развития

Для современной радиолокационной станции главным оценочным критерием выступает соотношение эффективности и качества. Под эффективностью понимаются обобщенные тактико-технические характеристики оборудования. Создание совершенной РЛС - сложная инженерная и научно-техническая задача, осуществление которой возможно только с использованием новейших достижений электромеханики и электроники, информатики и вычислительной техники, энергетики.

По прогнозам специалистов, в ближайшем будущем главными функциональными узлами станций самого разного уровня сложности и назначения будут твердотельные активные ФАР (фазированные антенные решетки), преобразующие аналоговые сигналы в цифровые. Развитие вычислительного комплекса позволит полностью автоматизировать управление и основные функции РЛС, предоставив конечному потребителю всесторонний анализ полученной информации.

6.1. ПРИНЦИП РАБОТЫ ИМПУЛЬСНОГО ПЕРЕДАТЧИКА

Передатчик, входящий в состав импульсной навигационной РЛС, предназначен для генерирования мощных кратковременных импульсов электрических колебаний сверхвысокой частоты (СВЧ) со строго определенной периодичностью, задаваемой схемой синхронизации.

Передатчик РЛС содержит генератор сверхвысокой частоты (ГСВЧ), подмодулятор, модулятор и источник питания. Структурная схема передатчика РЛС представлена на рис. 6.1.

Подмодулятор – формирует импульсы определенной длительности и амплитуды.

Импульсный модулятор – предназначен для управления колебаниями генератора СВЧ. В модуляторе вырабатываются видеоимпульсы высокого напряжения, которые подаются на вход магнетрона, вырабатывающего радиоимпульсы СВЧ заданной длительности. Принцип действия импульсных модуляторов основан на медленном накоплении запаса энергии в специальном накопителе энергии в промежуток времени между импульсами и быстрой последующей отдаче энергии нагрузке модулятора, т.е. магнетронному генератору, за время, равное длительности импульса.

В качестве ГСВЧ используются магнетроны и полупроводниковые генераторы СВЧ (диоды Ганна).

Структурная схема импульсного модулятора показана на рис. 6.2.

При размыкании коммутирующего прибора накопитель заряжается от источника постоянного напряжения через ограничитель (резистор), ограждающий источник питания от перегрузки. При замыкании прибора накопитель разряжается на нагрузку (магнетрон) и на его зажимах анод – катод создается импульс напряжения заданной длительности и амплитуды.

В качестве накопителя может использоваться емкость в виде конденсатора или разомкнутой на конце длинной (искусственной) линии. Коммутирующие приборы – электронная лампа (для ранее выпущенных РЛС), тиристор, нелинейная индуктивность.

Наиболее простой является схема модулятора с накопительным конденсатором. Схема такого модулятора содержит в качестве накопителя энергии: накопительный конденсатор, в качестве коммутирующего прибора: коммутирующую (модуляторную или разрядную) лампу, а также ограничительный резистор и магнетронный генератор. В исходном состоянии разрядная лампа заперта отрицательным напряжением на управляющей сетке (цепь разорвана), накопительный конденсатор заряжен.



При подаче на управляющую сетку лампы от подмодулятора прямоугольного импульса напряжения положительной полярности длительностью t И разрядная лампа отпирается (цепь замыкается) и накопительный конденсатор разряжается на магнетрон. На зажимах анод – катод магнетрона создается модулирующий импульс напряжения, под действием которого магнетрон генерирует импульсы колебаний СВЧ.

Напряжение на магнетроне будет до тех пор, пока на управляющей сетке разрядной лампы действует положительное напряжение. Следовательно, длительность радиоимпульсов зависит от длительности управляющих импульсов.

Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним - и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т.е. отношению его анодного напряжения к анодному току



6.2. ЛИНЕЙНЫЕ И МАГНИТНЫЕ МОДУЛЯТОРЫ

На практике применяются модуляторы с накопительной энергией, называемые линейными модуляторами. В состав принципиальной схемы такого модулятора (рис. 6.3) входят: зарядный диод V1 , катушка зарядной индуктивности L1, накопительная линия LC , импульсный трансформатор T , тиристор V2 , зарядная цепочка C1,R1.

При запертом тиристоре линия заряжается через V1,L1 до напряжения Е . Одновременно заряжается конденсатор С1 через резистор R1.

При подаче на тиристор запускающего импульса (ЗИ ) положительной полярности тиристор отпирается, протекающий через него ток разряда уменьшает сопротивление тиристора, и происходят разряд накопительной линии на первичную обмотку импульсного трансформатора. Модулирующий импульс напряжения, снимаемый со вторичной обмотки, подается на магнетрон. Длительность формируемого импульса зависит от параметров LC линии:

На практике широкое применение нашли коммутирующие приборы в виде катушек нелинейной индуктивности, которые получили название магнитных импульсных модуляторов. Катушка нелинейной индуктивности имеет сердечник из специального ферромагнитного материала, обладающего минимальными потерями. Известно, что если такой сердечник насыщен, то его магнитная проницаемость мала, и индуктивное сопротивление такой катушки минимально. Наоборот, при ненасыщенном состоянии магнитная проницаемость сердечника имеет большую величину, индуктивность катушки увеличивается, индуктивное сопротивление возрастает.

Кроме элементов, применяемых в схеме линейного модулятора, схема магнитного модулятора (рис. 6.4) содержит катушку нелинейной индуктивности (дроссель) L1 , накопительный конденсатор C1 , нелинейной трансформатор T1 , накопительный конденсатор С2 и импульсный трансформатор T2.

Когда тиристор заперт, заряжается конденсатор С1 от источника напряжения Е и сердечник дросселя L1 намагничивается до насыщения. При отпирании тиристора конденсатор С1 разряжается на первичную обмотку трансформатора Т1 . Индуктируемое во вторичной обмотке напряжение заряжает конденсатор С2 . К концу заряда сердечник Т1 насыщается, и конденсатор С2 разряжается на первичную обмотку импульсного трансформатора.

Длительность модулирующего импульса определяется временем разряда конденсатора С2. В необходимых случаях при длительности импульсов, превышающих 0,1 мкс, на практике вместо конденсатора С2 включают формирующую линию. Тогда длительность модулирующих импульсов будет определяться параметрами линии аналогично схеме линейного модулятора.

6.3. ПОДМОДУЛЯТОРНЫЕ КАСКАДЫ

Управление работой разрядной (модуляторной) лампы в схеме с накопительным конденсатором осуществляется специальной схемой подмодулятора, в состав которой входят усилитель запускающих импульсов; первый ждущий блокинг-генератор, работающий в режиме деления частоты повторения импульсов; второй блокинг-генератор, формирующий импульсы управляющего напряжения фиксированной длительности и амплитуды, которые управляют работой разрядной лампы. Такая схема подмодулятора обеспечивает работу передатчика различной частотой повторения и различной длительностью зондирующих импульсов.

Управление работой линейного и магнитного модуляторов, где в качестве управляющего элемента используются тиристоры, осуществляется задающим генератором, в состав которого обычно входят усилитель запускающих импульсов, ждущий блокинг-генератор, эмиттерный повторитель, согласующий входную цепь тиристора с выходом блокинг-генератора.



Рис. 6.5. Схема подмодулятора РЛС «Океан»

На рис. 6.5 представлена принципиальная схема подмодулятора РЛС «Океан», которая, несмотря на устаревшую элементную базу, находится до настоящего времени в эксплуатации.

Данная схема имеет четыре каскада:

Усилитель запускающих импульсов (левая половина лампы Л1 типа 6Н1П),

Ждущий блокинг-генератор(правая половина лампы Л1 ),

Л2 типа ТГИ1-35/3,

Выходной каскад на тиратроне Л3 типа ТГИ1-35/3.

В зависимости от длительности модулирующих импульсов (0,1 или 1 мкс) работает тиратрон Л2 или тиратрон Л3 . В первом случае заряд накопительной линии 1 происходит через зарядное сопротивление R1. Во втором случае накопительная линия 2 заряжается через сопротивление R2.

Нагрузкой выходных каскадов являются резисторы R3 и R4 , включенные параллельно в катодную цепь тиратронов Л1 и Л2. При разряде накопительных линий на этих резисторах создается импульс напряжения заданной длительности с амплитудой 1250 В.

В качестве подмодуляторного каскада модулятора применяется блокинг-генератор. Для получения малого выходного сопротивления блокинг-генератор на выходе имеет катодный повторитель.

6.4. ОСОБЕННОСТИ МАГНЕТРОННЫХ ГЕНЕРАТОРОВ

Магнетрон представляет собой двухэлектродный электровакуумный прибор с электромагнитным управлением. В диапазоне сантиметровых волн применяются многорезонаторные магнетроны. Устройство такого магнетрона показано на рис. 6.6.


11 10

Рис. 6.6. Устройство магнетрона Рис. 6.7. Пакетированный магнетрон

Основой конструкции магнетрона является анодный блок 1 в виде массивного медного цилиндра, в котором выточено по окружности четное число пазов, представляющих собой цилиндрические резонаторы 2.

В центре блока расположен цилиндрический оксидный подогревный катод 10 , имеющий значительный диаметр для получения достаточного эмиссионного тока. Резонаторы сообщаются с внутренней полостью магнетрона, называемой пространством взаимодействия, с помощью прямоугольных пазов 9. Катод укреплен внутри магнетрона с помощью держателей 12 , которые служат одновременно выводами тока 11. Держатели проходят через стеклянные спаи в цилиндрических трубках, укрепленных на фланце. Имеющиеся на фланце утолщения выполняют роль высокочастотного дросселя, препятствующего выходу высокочастотной энергии через выводы накала. С обеих сторон катода расположены охранные диски 4 , препятствующие утечке электронов из пространства взаимодействия в торцовые области магнетрона. С торцовой стороны анодного блока имеются связки-проводники 3 , соединяющие сегменты анодного блока.

Для охлаждения магнетрона на его наружной поверхности имеются ребра, обдуваемые вентилятором. Для удобства охлаждения, безопасности обслуживания и облегчения отвода высокочастотной энергии анодный блок заземляется, а к катоду прикладываются импульсы высокого напряжения отрицательной полярности.

Магнитное поле в магнетроне создается постоянными магнитами, изготовленными из специальных сплавов, создающих сильное магнитное поле.

С внешней нагрузкой магнетрон связан посредством проволочной медной петли 8 , которая одним концом припаяна к стенке одного из резонаторов, а другим присоединена к внутреннему проводу 7 короткой коаксиальной линии, проходящему через стеклянный спай 6 в волновод 5 . Колебания сверхвысокой частоты в магнетроне возбуждаются электронным потоком, управляемым постоянным электрическим и магнитным полями, направленными взаимно перпендикулярно друг другу.

В магнетронных генераторных РЛС применяются постоянные магниты, изготовленных из сплавов с большой коэрцитивной силой. Существуют две конструкции магнитных систем: внешние магнитные системы и «пакетные» магнитные системы. Внешняя магнитная система представляет собой стационарную конструкцию, между полюсными наконечниками которой устанавливается магнетрон.

В судовых навигационных РЛС получили распространение пакетированные магнетроны, у которых магнитная система является составной частью конструкции самого магнетрона. У пакетированных магнетронов полюсные наконечники входят с торцов внутрь магнетрона (рис. 6.7). Этим уменьшается воздушный зазор между полюсами, а, следовательно, и сопротивление магнитопровода, что позволяет сократить размеры и вес магнитной схемы. Схемы магнетронных генераторов представлены на рис. 6.8, а; 6.8, б.

В состав схемы магнетронного генератора входят: магнетрон, трансформатор накала и система охлаждения анодного блока магнетрона. Схема магнетронного генератора содержит три цепи: сверхвысокочастотную, анодную и накальную. Токи СВЧ циркулируют в резонансной системе магнетрона и в связанной с ней внешней нагрузке. Импульсный анодный ток протекает от положительного зажима модулятора через анод – катод магнетрона на отрицательный зажим. Он определяется выражением

а)

Рис. 6.8. Схемы магнетронных генераторов

где I A – среднее значение анодного тока, А;

F И – частота следования импульсов, имп / с;

τ И – длительность импульса, с;

α – коэффициент формы импульсов (для прямоугольных импульсов равен единице).

Цепь накала состоит из вторичной обмотки трансформатора накала Тр и нити подогрева катода. Обычно напряжение накала магнетрона равно 6,3 В, но ввиду того, что катод работает в режиме усиленной электронной бомбардировки, полное напряжение питания нити обогрева требуется только для разогрева катода перед подачей высокого напряжения на анод магнетрона. При включении высокого анодного напряжения напряжение накала обычно уменьшают автоматически до 4 В с помощью резистора R, включенного в первичную обмотку трансформатора накала. В схеме (рис. 6.8,а) модулирующий импульс напряжения отрицательной полярности с выхода модулятора подается на катод магнетрона.

Вторичная обмотка трансформатора накала по отношению к корпусу генератора находится под высоким напряжением. Аналогично в схеме (рис. 6.8, б) один конец вторичной обмотки импульсного трансформатора ИТр подключен к корпусу, а второй конец – к зажиму вторичной обмотки накального трансформатора. Поэтому изоляция между вторичной обмоткой трансформатора накала и корпусом, а также между обмотками должна быть рассчитана на полное анодное напряжение магнетрона. Чтобы не вызывать заметного искажения формы модулирующих импульсов, емкость вторичной обмотки трансформатора накала должна быть возможно меньше (не более нескольких десятков пикофарад).

6.5. ПЕРЕДАЮЩЕЕ УСТРОЙСТВО РЛС «НАЯДА-5»

Передающее устройство РЛС «Наяда-5» входит в состав прибора П-3 (приёмопередатчика) и предназначено для:

формирования и генерирования зондирующих импульсов СВЧ;

обеспечения синхронной и синфазной работы по времени всех блоков и узлов индикатора, приёмопередатчика, антенного устройства.

На рис. 6.9 показана структурная схема передающего устройства приёмопередатчика РЛС «Наяда-5».

В состав передающего устройства входят: блок сверхвысокой частоты; модулятор передатчика; фильтр модулятора; формирователь синхроимпульсов; выпрямительные устройства, обеспечивающие питанием блоки и цепи прибора П – 3.


В структурную схему приёмопередатчика РЛС «Наяда-5» входит:

Тракт формирования сигналов стабилизации , предназначенный для формирования импульсов вторичной синхронизации и поступающих в индикатор, а также для запуска через блок автоматической стабилизации управления модулятора передатчика. С помощью этих синхроимпульсов обеспечивается синхронизация зондирующих импульсов с началом развёртки на ЭЛТ индикатора.

Тракт формирования зондирующих импульсов , предназначенный для выработки импульсов СВЧ и передачи их по волноводу в антенное устройство. Это происходит после формирования модулятором напряжения импульсной модуляции генератора СВЧ а также импульсов контроля и синхронизации сопрягаемых блоков и узлов.

Тракт формирования видеосигнала , предназначенный для преобразования с помощью гетеродина и смесителей отражённых импульсов СВЧ в импульсы промежуточной частоты, формирования и усиления видеосигнала, который затем поступает в индикатор. Для передачи зондирующих импульсов в антенное устройство и отражённых импульсов в тракт формирования видеосигнала используется общий волновод.

Тракт настройки контроля и питания, предназначенный для выработки питающих напряжений всех блоков и цепей прибора, а также для контроля работоспособности источников питания, функциональных блоков и узлов станции, магнетрона, гетеродина, разрядника и др.

6.6. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ПЕРЕДАТЧИКОВ

Конструктивно передатчики РЛС совместно с приемным устройством могут располагаться как в отдельном изолированном приборе, который называется приемопередатчиком , так в антенном блоке.

На рис. 6.10 изображен внешний вид приемопередатчиков современной одно и двух канальной автоматизированной радиолокационной станции «Ряд» (3,2 и 10 см диапазона волн), который расположен в отдельном приборе. Основные технические характеристики показаны в таблице 6.1.

Приемопередатчики 3-х см диапазона (П3220 Р) с импульсной мощностью 20 кВт и более построены на базе магнетронов с безнакальным автокатодом. Данные магнетроны имеют время безотказной наработки в условиях эксплуатации более 10000 часов, обеспечивают мгновенную готовность к работе и существенно упрощают передатчик.

Рис. 6.10. Приемопередатчики автоматизированной РЛС «Ряд»

Широкое внедрение в современных судовых навигационных РЛС микроэлектроники, в первую очередь - твердотельных СВЧ-приборов, микропроцессоров, позволило, в сочетании с современными методами обработки сигналов, получить компактные, надежные, экономичные и удобные в эксплуатации приемо-передающие устройства. Для исключения применения громоздких волноводных устройств и исключения потерь мощности при передаче и приёме отраженных сигналов в волноводах передатчик и приёмник конструктивно располагают в антенном блоке в виде отдельного модуля, который иногда называется сканером (см. рис.7.23). Этим обеспечивается быстросъемность модуля приёмопередатчика, а также проведение ремонта методом агрегатной замены. Включение и выключение питания таких типов приемопередатчиков обеспечивается дистанционным способом.

На рис. 6.11 показано антенно-передающее-приёмное устройство береговой РЛС (БРЛС) «Балтика-Б», выполненного в виде моноблока. БРЛС «Балтика-Б» используется в качестве береговой РЛС в системах управления движения судов (СУДС), а также на акваториях портов, подходных каналах и фарватерах.

Антенна и приемопередатчик БРЛС «Балтика»

с горячим резервированием

Подробнее о современных радарах изложено в главе 11 учебного пособия.