Основы оптимизации режимов системообразующей электрической сети. Оптимизация режимов упрочнения. АСУ ТП подстанций

Введение. 5

1.1. Параметры режима ЭС. 6

1.4.2. Градиентный метод. 11

1.11.1. Графический метод. 24

2.2. Подсистемы АСУ ТП. 53

2.3.2. Счетчики. 56



2.5. АСУ ТП ТЭС. 67

2.6. АСУ ПЭС.. 70

2.7. АСУ ТП подстанций. 70


Введение

X

Y – вектор параметров режима;

U – вектор управления.

Функциональные зависимости Y(X,U), Z(X,Y,U).



Параметры режима ЭС

Математическая модель режима – это система нелинейных алгебраических уравнений, как правило, узловых.

где - матрица узловых проводимостей, имеет порядок n ;

Вектор напряжений в узлах;

Вектор узловых мощностей;

n – количество независимых узлов.

Для решения системы должны задаваться независимые параметры , к числу которых относятся узловые мощности и напряжения в балансирующем узле. Имея эти параметры можно однозначно определить режим (если он существует) путем решения системы (1).

Все остальные параметры режима, получаемые на основе расчета: напряжения в узлах ЭС – U S , потоки по линиям –P l , Q l , токи в ветвях –I l , потери – DP и др., называют зависимыми параметрами режима .

Часть независимых параметров (узловые мощности) в нормальных условиях не подчиняются диспетчеру (нагрузки в узлах). Остальные (мощности источников) должны оптимизироваться. К числу независимых параметров относятся и коэффициенты трансформации автотрансформаторов связи сетей разных напряжений (К Т), которые могут регулироваться с помощью РПН.

Своеобразным независимым параметром является и состав включенного в работу оборудования, который характеризуется графом G.

Независимые параметры режима, оптимизация которых должна проводиться при диспетчерском управлении, можно рассматривать как вектор X = { P i , Q i , K T , G, } , где индекс i определяет источники.

По аналогии вектор зависимых параметров объединяет все остальные параметры режима, однозначно определяемые при фиксированных допустимых значениях всех независимых параметров:

Y = {U S , P l , Q l , I l , d, DP,… }

Для определения Y при заданных X используются различные методы и программы расчета стационарных режимов.

Градиентный метод

Возможное направление выбирают противоположным градиенту:

Основное уравнение:

.

Составляющие градиента находятся через конечные приращения (рис.1.7):

.

Так как tgb ¹ tga, то этот метод имеет погрешность в определении градиента, которая зависит от величины приращения аргумента.

Для снижения погрешности используют метод центрированных приращений .

Градиентный метод часто сочетается с выбором оптимального шага. Для выбора используется пробный шаг t 0, в конце которого определяются координаты Х1 и составляющие градиента. По значениям градиента в точках Х и Х1 определяется шаг близкий к оптимальному. Алгоритм метода приведена рис.1.8.:

1. Исходное приближение Х = Х (0) ;

2. Определение градиента ÑF | X ;

3. Сравнение |ÑF| < eps;

4. t 0 и определение ;

5. Определение t ОПТ;

6. Определение ;

Метод широко используется в программах оптимизации режимов.

Метод случайного поиска

В данном методе возможные направления определяются с помощью генератора псевдослучайных чисел с равномерным распределением в диапазоне -1,…,1.

Для этого в исходной точке Х (0) рассматривается куб с гранью 2×dx (рис.1.9) и считается значение функции F 0 . Случайным образом выбирается точка в кубе , где g i – псевдослучайное число (-1 £ g i £ 1). В точке Х (1) считается значение функции F 1 .

Если F 1 < F 0 , то исходная точка Х (0)­­­ переносится в точку Х (1) и процедура повторяется. Если F 1 > F 0 , то выбранная точка Х (1) считается неудачной, и вместо нее отыскивается новая точка. Вдали от минимума вероятность попадания в область возможных направлений близка к 50%. По мере приближения к решению величина dx уменьшается.

Достоинства метода: простота алгоритма, не требующего вычисления производных. Недостаток - большое число итераций.

Метод прямой оптимизации

Данный метод используется, когда G(X) представлена простыми функциями, например линейными. В этом случае m неизвестных из n можно аналитически выразить через остальные k = n – m и подставить эти выражения в F(X). Тогда получим новую функцию ,

условие минимума которой будет иметь k уравнений:

Решение этих уравнений позволяет найти все k составляющих вектора c. Остальные переменные находятся подстановкой в ранее найденные выражения.

Рассмотрим пример:

F(X) = 5 + x 1 2 + x 2 2 ® min;

g(X) = x 1 + x 2 – 2 = 0;

f(c) = f(x 2) = 5 + (2 – x 2) 2 + x 2 2 ® min,

, –2(2 – x 2) + 2x 2 =0, x 2 = 1;

x 1 = 2 – 1 = 1.

Метод прямой оптимизации прост, но может быть использован для решения только аналитически заданных функций сравнительно простого вида.

Характеристики блоков

Рассмотрим упрощенную схему основных потоков энергии в блоке

Полагаем, что известны следующие расходные характеристики:B(Q K), Q т (P), Q CH (P), P CH (P). При этом часовые расходы на собственные нужды отнесены на выработку электроэнергии.

При построении ХОП блока различают удельный прирост расхода топлива брутто и нетто .

Прирост брутто относят к полной выработке

где – относительный прирост расхода тепла на собственные нужды.

Прирост нетто относят к полезно отпущенной выработке

так как. ,

где – относительный прирост расхода электроэнергии на собственные нужды.

Для приблизительного расчета можно не учитывать собственные нужды. Тогда: .

Для примера на рис 1.24 показана ХОП блока 200 МВт.

Корректировка ХОП в процессе эксплуатации требует учета всевозможных факторов, влияющих на КПД основного оборудования блока, изменения внешних условий, таких как температура наружного воздуха, температура циркуляционной воды, изменение характеристик топлива и т.п.

Маневренные свойства блока

КЭС участвуют в регулировании частоты и перетоков мощности в системе, что требует иногда быстрого изменения их мощности. При этом различают нагрузочный диапазон P min £ P £ P max и регулировочный диапазон, в котором нагрузка может меняться автоматически без изменения состава вспомогательного оборудования (числа горелок, питательных насосов и т.д.).

Сброс нагрузки производится быстро, а подъем – медленно по несколько процентов в минуту, особенно при включении блока после простоя. Время пуска из холодного состояния определяется плавным подъемом температуры в элементах конструкции турбины и котла, например, в барабане котла на 2,5…3,0 °С/мин, и может достигать нескольких часов, а для мощных блоков и более 10 часов. Контроль за состоянием, например, турбины при пуске осуществляется по приборам, фиксирующим относительное удлинение и осевой сдвиг ротора; разность температур между верхом и низом цилиндров, по ширине фланцев, между фланцами и шпильками; искривление вала и вибрацию; тепловое расширение паропроводов и корпуса турбины и т. п.

При плановых простоях в часы снижения потребления продолжительность пуска зависит и определяется временем простоя блока. Пуск сопровождается дополнительными пусковыми расходами топлива, которые также зависят от длительности простоя, и от номинальной мощности блока, определяющей его массогабаритные показатели. При пуске из холодного состояния мощного пылеугольного блока они могут достигать нескольких сотен тонн.

Графический метод.

Графический метод используется, когда ХОП всех блоков e(P) заданы в виде графиков (рис.1.25). Все ХОП строятся в одном масштабе по оси приростов. Затем строится характеристика станции путем суммирования мощностей блоков при фиксированных значениях прироста по условию .

После этого на оси мощности ХОП электростанции откладывается значение ее нагрузки Р о и определяются соответствующие мощности блоков при выполнении баланса .

Оптимизация надежности

Предлагаемый раздел не претендует на глубокое изложение проблемы надежности, являющейся одной из ключевых при управлении режимами и изучаемой в рамках специальной дисциплины. Здесь лишь рассматривается подход к оценке оптимального уровня надежности на примере выбора аварийного резерва в системе.

Уровень надежности при этом рассматривается как экономическая категория, так как связан с затратами З на повышение надежности и сокращением при этом затрат у потребителя при полной или частичной потере питания, определяемых как ущерб У от недоотпуска электроэнергии (рис.1.48). Оптимальный уровень надежности Н опт определяется по минимальным общим затратам.

При оценке надежности используется статистический материал, позволяющий определить вероятности нерабочего q и рабочего p состояния.

q + p = 1 .

,

где l – показатель потока отказов, определяющийся по типу оборудования, выбирается путем сбора статистики.

Рассмотрим пример выбора одноцепной или двухцепной ЛЭП для электроснабжения потребителя:

n = 1: ,

где у 0 – удельный ущерб руб/кВт×ч,

T – расчетный срок.

Двухцепная ЛЭП выгодна, если .

Подсистемы АСУ ТП.

АСУ ТП делятся на подсистемы:

1. элементные;

1) включают подсистемы технического обеспечения (ТО) – все технические средства;

2) информационное обеспечение (ИО) – вся информация;

3) программное обеспечение (ПО);

4) организационное обеспечение (ОО), определяющее порядок подготовки данных, обмена между подразделениями, сроки подготовки информации, формы выходных документов и т.п.;

5) кадровое – штатное расписание, должностные инструкции, система повышения квалификации и т.п.

2. функциональные:

1) управление текущим режимом (REAL TIME);

2) планирование:

· текущее – на 1 ч, 1 сутки, неделю,

· перспективное – на 1 месяц и более;

3) материально-техническое снабжение (МТС) – новое оборудование, детали для ремонта, топливо и т.п.;

4) управление сбытом тепловой и электрической энергий;

6) бухгалтерский учет (заработная плата).

Счетчики.

В настоящее время очень актуальна задача учета электроэнергии. Для этой цели используются различные счетчики:

· индукционные, для автоматизации дополняются устройством формирования импульса (УФИ);

· электронные счетчики, очень перспективные, сегодня выпускаются в достаточном количестве;

· АББ Альфа – многофункциональный счетчик (W P , W Q , P­ MAX , четырех тарифная зона, контроль или выдача в виде электрического сигнала уровня напряжения, допускают воздействие на отключение, имеют высокую точность 0,2 % , чувствительность 1000 [????], на порядок дороже).

Срок службы 20¸30 лет. Эти счетчики являются основой АСКУЭ.

2.3.3. Устройства преобразования информации.

1. АЦП бывают различными видами преобразования:

– развертывающее,

– с поразрядным уравновешиванием.

Развертывающее преобразование:

При U BX > U П запускается счетчик импульсов.

Недостаток данного вида преобразования: время преобразования зависит от частоты сигнала.

Поразрядное уравновешивание:

Данное преобразование работает следующим образом:

С помощью компаратора K через устройство управления УУ на триггерах поочередно, начиная со старшего разряда 2 n выставляется 1. Если при этом U OC > U BX , то 1 сбрасывается. В противном случае – сохраняется. Например:

1 × 2 3 = 8 , U OC = 8 > U BX = 7 .

1 × 2 2 = 4 , U OC = 4 > U BX = 7 .

U OC = 2 2 × 1 + 2 1 = 6 < U BX = 7 .

U OC = U BX Þ код 0111 .

2. ЦАП : ,

Схема на операционном усилителе.

Регистраторы событий.

В настоящее время электронные осциллографы заменяются специальными регистраторами событий, которые позволяют записывать все процессы (мгновенные токи и напряжения i t , U t ) в аварийных ситуациях, а также в момент срабатывания устройств РЗиА. Это позволяет анализировать аварии, достоверно определять причины и способствует повышению надежности. Источником информации являются электронные преобразователи ЭП, практически безинерционные, позволяющие без искажения в прямом виде снимать кривые i t и U t . Обычное число точек на период – 20. Примерами таких регистраторов являются: РЭС ПРСОФТ и НЕВА (позволяет регистрировать до 90 сигналов, большое значение имеет развитое программное обеспечение). НЕВА является основой для построения АСУ ТП на мощных системных подстанциях.

Информационное обеспечение.

Информационное обеспечение содержит всю информацию, которая используется при управлении. Эта информация делится на количественную и смысловую.

Смысловая информация – это разного рода документы, инструкции, правила устройства и т.п.

Количественная информация – это информация о параметрах системы и технологического процесса.

Источниками технологической информации являются УТМ. Они осуществляют циклический опрос датчиков с периодом t (5 с, 1 с). Если время обработки первого опроса Dt , то число точек опроса . Цикл опроса t зависит от скорости изменения параметров ().

Любой измеряемый параметр y t представляется в цифровом виде целым числом квантов , где m – масштаб кванта.

Масштаб кванта определяется разрядностью АЦП устройства ТМ и номинальными параметрами первичных преобразователей.

При n = 8 (8 разрядов) максимальное значение Y = 256

Например, если прибор имеет номинальный ток I H = 600 А , то

А/квант .

При измерении напряжения: U H = 110 кВ

.

При измерении мощности:

Для U H = 500 кВ и I H = 2000 А

.

Единицами измерения информации является бит и его производные:

байт = 8 бит,

кбайт = 1024 байт, Мбайт, Гбайт и т.д.

Информация – мера устранения нашей неопределенности об объекте, поэтому единица измерения и оценивает меру снижения неопределенности. Один бит позволяет снизить неопределенность в 2 раза. При представлении информации используется система кодирования с помощью равномерных и неравномерных ходов. Равномерное проще, т.к. ходы имеют постоянную длину.

Один байт позволяет закодировать 2 8 = 256 различных символов. Обычно хватает n = 7 . Один лишний используется для аппаратной проверки достоверности. Это бит четности. Содержимое его (0 или 1) дополняют до четного. Например:

Для повышения достоверности используется:

1) разделение информации на блоки с определением контрольной суммы и передача их в пункт приема,

2) контрольная сумма по всему сообщению.

Для сокращения объема передаваемой информации по линиям связи используют классификаторы. По этой системе все предприятия, объекты, их продукты производства представляются цифрованными кодами.

При работе с этой информацией, которая представляется массивами однотипных данных, широко используются системы управления базами данных (СУБД), позволяющие проводить первичную загрузку, обновление, корректировку и надежное хранение данных.

АСУ ТП ТЭС.

Управление режимом ТЭС осуществляет дежурный инженер, который подчиняется диспетчеру АО Энерго и управляет работой оперативного персонала блоков и отдельных механизмов С.Н., которые размещаются на БЩУ или местных ЩИТАХ. В соответствие с этой структурой строится и система автоматизации управления. Здесь имеется общестанционный уровень (ОВК – общестанционный вычислительный комплекс) и уровни отдельных блоков (ПВК – хххххххххх ВК). Источники информации – датчики технологических параметров (тепловая часть) и электрических, а также, положение аппаратов с двумя устойчивыми состояниями. ТМ здесь в полной мере не используется. ТМ используется только для выдачи информации диспетчеру электростанции (энергосистемы).

При управлении ИВК могут использовать в различных режимах:

1) режим советчика

Здесь U – управляющее воздействие.

2) супервизор (надсмотрщик)

ИВК используется:

может менять уставки регуляторов y i и параметры настройки. Решения принимаются на основе анализа.

3) цифровое управление:

ЛПР принимает решение на основе знаний технологического процесса, опыта и информации.

ИВК принимает решение только на основе математических моделей. На ТЭС реализованы функционально-групповое управление, т.е. комплексное управление группой объектов, выполняющих различные функции.

Котел:

– подача топлива, где согласуется работа подачи сырого угля, мельницы, формирования пылевоздушной смеси и подача её в горелки;

– подача воды: питательные насосы ПН, конденсационные насосы КН, деаэратор, насос химически чистой воды;

– подача воздуха: воздухоподогреватель, дутьевые вентиляторы и т.п.

Синхронный генератор:

– система возбуждения (СВ): трансформатор, тиристоры, охлаждение тиристоров, регулятор возбуждения;

– система охлаждения генератора:

а) водяное: подготовка дистиллята, насосы, система контроля утечки, температуры на входе и выходе, устройство охлаждения нагретой воды.

Для контроля отдельных групп могут использоваться различные технические средства и программы. Например, для водяного охлаждения обмоток статора используется система “Нептун”, включающая сотни датчиков температуры, установленных в каждом стержне обмотки. Эти датчики опрашиваются с цикличностью в несколько секунд и контролируются компьютером. При обнаружении превышения температуры вырабатывается звуковой сигнал.

Аналогичная система действует для контроля работы подшипников.

Функции АСУ ТП на ТЭС:

1. сбор информации о параметрах технологического процесса, проверка достоверности и исправности датчиков и связей их с ЭВМ;

2. контроль параметров технологического процесса и сигнализация о выходе за допустимую область или решительном приближении к ней;

3. определение технико-экономических показателей (ТЭП) и ведение ведомости с циклом Dt = 15 мин, считаются удельные расходы, расходы на С.Н. тепла и электроэнергии с итогом по вахтам, суткам до месяца;

4. контроль за экономичностью работы отдельных агрегатов С.Н.;

5. оценка ресурса паропроводов, экранных трубок котла и других элементов. Для оценки ресурса используется информация о температуре;

6. по электрической части: контроль за работой электрической части системы возбуждения, нагрузки по активной и реактивной мощностям генератора;

7. контроль за системой охлаждения обмоток, контроль работы подшипников;

8. контроль частичных разрядов изоляции (осуществляется с помощью датчиков температуры путем контроля высокочастотных сигналов.

На разных ТЭС по инициативе персонала реализуются и другие функции. Например на ТЭЦ-3 в электрической части разработана система по контролю за сборкой схемы блока.

На общестанционном уровне АСУ ТП контролирует работу ОРУ, РУ СН, при этом:

1. отрабатываются бланки переключений;

2. контролируется ресурс выключателей в зависимости от величины тока отключения;

3. оптимизируется распределение нагрузки между блоками;

4. планирование ремонтов;

5. ведение ведомостей ТЭП в целом по станции;

6. контроль за работой общестанционных цехов (хим-водоочистка, топливо-подача и т.п.)

Сегодня используются разные схемы АСУ ТП. В эксплуатации находятся еще первые системы ИВ-500 на блоках 500 МВт (Троицкая ГРЭС), отечественный двухмашинный комплекс на базе СМ.

В настоящее время появилось много поставщиков систем АСУ ТП, в том числе заграничных фирм. Сегодня предпочтение отдается отечественным разработкам. Наиболее продвинутые системы поставляются фирмой КОСМОТРОНИКА (Сургутская ГРЭС, Нижневартовская ГРЭС, Пермская ГРЭС). В системе выполняются функции контроля пуска блоков с автоматизацией некоторых функций, функции оптимизации работы отдельных механизмов С.Н., функции экологического контроля и т.п. Контроль за пуском позволяет сократить время пуска при сохранении допустимых температур напряжений в металле.

АСУ ПЭС

Используется принципиальная схема, как и для электростанций. Источником информации являются УТМ. Среди объектов отсутствует ЭС. УТМ устанавливаются на подстанциях. На важнейших подстанциях – устройства типа ГРАНИТ, на простых – более простые устройства. ОИК обслуживается таким же программным обеспечением, что и в ЭС. Здесь решается специфические для сетей задачи:

– анализ режима (стационарного, расчет токов КЗ, планирование режимов). При этом осуществляется контроль фактического состояния оборудования, учитывающий ресурсы выключателей с учетом контроля нагрева оборудования с помощью тепловизоров;

– задачи оптимизации режима по минимуму потерь в сети;

– задачи контроля достоверности информации, проверки параметров на допустимость.

АСУ ТП подстанций.

Автоматизация их производится в последнюю очередь. Есть несколько путей для автоматизации:

1. Применяется на системных подстанциях, где устанавливается КП УТМ, а для информирования персонала оставлены старые технические средства, т.е. стрелочные приборы. Здесь с помощью специальной техники можно “подслушать” информационную шину и всю информацию ввести в компьютер. Это путь не получил большого распространения.

2. Для создания АСУ ТП подстанций могут использоваться регистраторы электрических сигналов типа “Нева”. Основа регистраторов – блок регистрации и контроля нормальных и аварийных режимов и учета электроэнергии. Этот регистратор позволяет подключать от 16 до 64 сигналов для осциллографирования при сканировании 20-ти точек на период. От 32 до 96 замеряемых действующих значений от преобразователей типа E. От 24 до 288 дискретных сигналов от блок-контактов выключателей, от промежуточных и выходных реле релейной защиты. Дискретные входы могут использоваться и для учета электроэнергии как счетчики импульсов. Это позволяет подключать электронные счетчики с импульсным выходом и индукционные, если они достроены устройством формирования импульсов (УФИ). Регистратор связан с компьютером и через модем информация может передаваться на диспетчерский пункт энергосистемы. Используются средства графического редактирования. Специфические задачи – проверка баланса мощности и энергии, определяется ТЭП, т.е. потерь технических и коммерческих, затрат на обслуживание и себестоимости передачи, или преобразования единицы электрической энергии. Задачи автоматизации регулирования напряжения, аварийной статистики.

Введение. 5

1. Оптимизация режимов энергосистем. 6

1.1. Параметры режима ЭС. 6

1.2. Формулировка задачи оптимизации. 7

1.3. Особенности задачи нелинейного программирования. 8

1.4. Методы безусловной оптимизации. 9

1.4.1. Метод покоординатного спуска. 10

1.4.2. Градиентный метод. 11

1.4.3. Метод случайного поиска. 12

1.4.4. Метод деформированного многогранника. 13

1.5. Оптимизация с учетом ограничений в форме равенств. 13

1.5.1. Метод прямой оптимизации. 13

1.5.2. Метод приведенного градиента. 14

1.5.3. Метод неопределенных множителей Лагранжа. 15

1.6. Оптимизация с учетом ограничений в форме неравенств. 16

1.7. Условия оптимального распределения нагрузки между параллельно работающими блоками. 18

1.8. Характеристики основного оборудования ТЭС. 20

1.9. Характеристики блоков. 23

1.10. Маневренные свойства блока. 24

1.11. Методы распределения нагрузки между блоками на КЭС. 24

1.11.1. Графический метод. 24

1.11.2. Распределение с помощью ЭВМ. 25

1.12. Влияние погрешностей в определении e на пережег топлива. 26

1.13. Условие оптимального распределения в системе с ТЭС. 27

1.14. Условия распределения с учетом федерального оптового рынка энергии и мощности (ФОРЭМ). 28

1.15. Определение удельных приростов потерь. 29

1.16. Мероприятия по снижению потерь в сети. 31

1.17. Распределение нагрузки в системе с ГЭС. 32

1.18. Определение характеристик ГЭС. 33

1.19. Распределение нагрузки в системе с ГЭС. 35

1.19.1. Применение динамического программирования для выбора графика сработки водохранилища для ГЭС. 35

1.20. Оптимизация реактивной мощности в системе. 38

1.21. Комплексная оптимизация режима. 38

1.22. Выбор состава включенного в работу оборудования. 40

1.23. Применение ЭВМ для оптимизации. 41

1.24. Оптимизация надежности. 43

1.24.1. Выбор оптимального резерва. 43

1.24.2. Алгоритм выбора резерва. 45

1.24.3. Определение дискретных рядов аварийного выхода и снижения нагрузки. 46

1.24.4. Ряд снижения нагрузки. 47

1.25. Оптимизация качества электроэнергии. 47

1.26. Интегральный критерий качества. 48

1.27. Определение оптимального напряжения для осветительной нагрузки. 50

2. Автоматизированные системы управления (АСУ). 52

2.1. Энергосистема как объект управления. 53

2.2. Подсистемы АСУ ТП. 53

2.3. Подсистемы технического обеспечения. 54

2.3.1. Датчики электрических параметров. 55

2.3.2. Счетчики. 56

2.3.3. Устройства преобразования информации. 56

2.3.4. Средства связи в АСУ и телемеханика. 57

2.3.5. Регистраторы событий. 60

2.3.6. Автоматизированные системы контроля и учета электроэнергии (АСКУЭ). 61

2.3.7. Средства отображения информации. 61

2.3.8. Информационное обеспечение. 61

2.4. Подсистемы программного обеспечения АСУ. 63

2.5. АСУ ТП ТЭС. 67

2.6. АСУ ПЭС.. 70

2.7. АСУ ТП подстанций. 70

2.8. Контроль за работой ПЭ энергосистемы. 71


Введение

Эксплуатация энергосистем связана с большими затратами и, в первую очередь, с затратами на топливо. Запасы органического топлива на Земле сокращаются, поэтому растут цены на топливо и обостряется проблема повышения эффективности процессов производства, передачи и распределения энергии. Завершившаяся реструктуризация Единой Энергосистемы России и разделение ее на компании создают условия для развития конкуренции в сферах генерации и сбыта. Но с технической точки зрения и с позиций управления энергосистема остается единой.

Сложности управления энергетикой сегодня связаны с тем, что существенно сокращены инвестиции и изношено основное оборудование.

Все это требует дальнейшего развития и совершенствования современных способов управления, использующих математические методы и ЭВМ. Упрощенная схема управления показана на рис. 1.1.

X – вектор внешних воздействий на систему;

Y – вектор параметров режима;

Z – критерий управления, формализующий основные цели функционирования энергосистемы;

U – вектор управления.

Функциональные зависимости Y(X,U), Z(X,Y,U).

Рис. 1.1. Цель управления Z®extr.

ЭВМ используется здесь как средство для автоматизации человеческой деятельности по управлению. Поэтому такие системы называются автоматизированными системами управления (АСУ).

Введение и эксплуатация АСУ требует больших капиталовложений. Окупаются эти вложения за счет снижения эксплуатационных расходов путем снижения расходов топлива, повышения надежности и улучшения качества поставляемой энергии.

И хотя относительная экономия затрат на топливо составляет обычно не более 1,5 – 2 %, в абсолютном исчислении она дает вполне ощутимые результаты.

Значительный эффект в системах достигается за счет постоянного контроля состояния и снижения аварийности.


Оптимизация режимов энергосистем

Внутристанционная оптимизация режимов позволяет получить экономию ресурса (топлива либо воды) за счет выбора состава, а также реактивных и активных мощностей агрегатов. Предполагается при этом, что станция работает с нагрузками, которые заданы энергосистемой, и выполняются все заданные ограничения.

Внутристанционные задачи особенно актуальны на стадии оперативного планирования и управления режимами станций. Вначале на стадии оперативного планирования составляется план использования агрегатов. План составляется по прогнозной информации и позволяет оперативному персоналу наметить мероприятия по рациональному управлению станцией на период, чаще всего на сутки. На второй стадии ведется управление в темпе производства. Если прогнозная и текущая информации совпадают, то реализуется плановая стратегия управления. Если совпадения нет, то производится коррекция плана. Обе стадии составляют главное звено обеспечения надежности и экономичности работы системы. Действительно, при этом непосредственно решаются вопросы участия станций в покрытии активных нагрузок потребителей, в регулировании частоты и напряжения, обеспечивается надежность схемы электрических соединений, надежность работы агрегатов и многое другое. Поэтому задачи внутристанционной оптимизации характеризуются разнообразием и большим количеством системных и станционных ограничений. При оптимизации режимов системы множество станционных ограничений опускается, при внутристанционной оптимизации требуются их детальный анализ и учет.

Другой особенностью внутристанционных задач является то, что большая часть процессов управления режимами станций автоматизирована, и поэтому решение должно производиться с учетом возможностей его реализации средствами автоматики. Как бы полно ни была составлена математическая модель, решение потеряет смысл, если оно не учитывает возможности диспетчерских средств управления и логику автоматических устройств. В общем виде математическая модель включает:

1) уравнение цели

2) уравнения связи. Это расходные характеристики агрегатов В i (P i ) либо Q i (P i ), где i - номер агрегата;

3) уравнения ограничений, которые включают:

а) балансовое уравнение мощности

б) ограничения по активным и полным мощностям агрегатов;

в) ограничения по числу работающих агрегатов

Z ³ Z min t ,

г) ограничения на комбинации включенных агрегатов;

д) ограничения по возможности реализации решений, определяемые устройствами режимной автоматики;

е) ограничения по времени обязательной работы агрегатов и простоя перед пуском.

Ограничения определяются схемой электрических соединений станции, противоаварийной автоматикой, компоновкой сооружений ГЭС и пр.

В этих уравнениях В t , Q t - расходы топлива и воды на интервале t, которые включают и пусковые расходы; активные мощности агрегатов i на интервале t.

Большой прогресс в решении внутристанционных задач обеспечивается в условиях АСУ ТП электростанций. Без вычислительной техники решить достаточно корректно задачу в приведенной постановке невозможно. Если решает ее диспетчер, имея в своем распоряжении лишь диаграммы режимов, инструкции, то он в основном полагается на свой опыт. ЭВМ позволяет диспетчеру использовать алгоритмы и программы.

Вопрос: В чем заключается принципиальная сложность вопроса выбора оптимального состава агрегатов энергосистемы?

С повышением энергии, вкладываемой в нагрев, происходит увеличение глубины закаленного слоя. Однако, эта закономерность действует лишь до момента видимого оплавления поверхности. С появлением на облученном участке кратеров глубина упрочненного слоя если и увеличивается, то обязательно с нарушением равномерности ее распределения по пятну обработки. Это явление может выступать в качестве ограничивающего фактора при назначении режима лазерной закалки. Другим важным фактором, определяющим качество обработки, является неопределенность в равенстве посылаемой на поверхность энергии и энергии, которая поглощена этой поверхностью. Поскольку универсальных номограмм для учета поглощающих характеристик различных поверхностей не построено, приходится чисто эмпирически, по результатам упрочнения подбирать корреляционные связи между лабораторным экспериментом и облучением в реальных производственных условиях. Причем на уровень данных связей влияет не только физическое и химическое состояние облучаемой поверхности, но и технические особенности лазерной аппаратуры, погрешности контрольно-измерительных приборов.

Выбор критической энергии лазерного излучения при обработке с разным диаметром пятна закалки проводят следующим образом. При фиксированном диаметре пятна закалки выполняют импульсную лазерную термообработку поверхности исследуемых образцов при различной энергии излучения ОКГ. Та энергия, превышение которой приводит к нарушению шероховатости поверхности, считается критической.

Для достижения надежности результатов упрочнения, как правило, необходимо корректировать типовые режимы облучения применительно к конкретному изделию и энергетическим характеристикам конкретной лазерной установки. Одинаковый по типу и размерам инструмент из одной и той же марки стали, но изготовленный и прошедший объемную термообработку на разных предприятиях, имеет различную поглощательную способность. Поэтому при обработке с одним уровнем энергии эффект лазерной закалки будет различным. Для стабилизации коэффициента поглощения и выравнивания эффектов необходимо применять предварительное химическое травление поверхности или покрытие ее тонким слоем какого-либо вещества. Стабилизация поглощения не избавляет от необходимости привязывать назначаемые режимы облучения к используемой лазерной установке. Как известно, устройство технологических установок таково, что управление энергией излучения осуществляется изменением напряжения накачки. Эта зависимость определяется качеством юстировки и кондиционностью оптических элементов, поэтому у разных установок она неодинакова. Более того, по мере разъюстировки оптического блока и накопления дефектов в оптических элементах энергия излучения может резко снижаться. Следовательно, контрольным параметром служит не устанавливаемая на лазерной установке величина (напряжение накачки), а измеряемая с помощью дополнительного прибора характеристика (энергия излучения). Учитывая схему и возможные погрешности в измерении энергии становится очевидным, что точность фиксирования этой величины на разных установках может быть различной. Другой причиной корректировки режимов облучения является несовершенство контроля степени расфокусировки пятна облучения.



Основные параметры процесса лазерной обработки материалов приведены на рисунке 4.

При разработке технологических режимов упрочнения сталей и сплавов выбраны следующие характеристики лазерного излучения:

Средняя за импульс плотность мощности излучения;

Длительность импульса;

Дефокусировка лазерного пучка, то есть смещение облучаемой поверхности на определенное расстояние от фокальной плоскости объектива оптической системы лазера;

Коэффициент перекрытия пятен дискретного лазерного упрочнения, то есть степень перекрытия пятен в ряду (рисунок 5).

ненной зоны, полученной от действия предыдущего импульса, подвергается новому нагреву.

В той части пятна, где температура повторного нагрева не превышала точку АС 1 , происходит скоростной отпуск ранее возникшей аустенитно-мартенситной структуры с образованием участков металла с повышенной травимостью и пониженными значениями твердости (рисунок 5, б, рисунок 6).

Выбор степени перекрытия пятен облучения для различных условий изнашивания проводили с учетом зависимости размеров закаленной и отпущенной зон от коэффициента перекрытия (рис. 7), а также в соответствии с положениями, вытекающими из теоретической трактовки правила Шарпи. При этом учитывали, что увеличению износостойкости в условиях граничного трения способствует достижение при лазерной обработке неоднородного структурного состояния как обширных поверхностей, так и отдельно взятого пятна, что связано с образованием при изнашивании рельефа, повышающего маслоемкость сопряжений при несовершенном смазывании. Напротив, максимальная износостойкость в условиях трения без смазки наблюдается при возможно большей степени упрочнения материала, относительной однородности и дисперсности структурных составляющих упрочненного слоя. В этом случае рекомендуется лазерная закалка при частичном наложении пятен облучения.

Установлено, что для получения достаточных размеров участков упрочненного металла облучение следует вести при коэффициентах перекрытия, превышающих 0,2.

От выбора значения коэффициента перекрытия зависит равномерность упрочненного слоя по глубине и производительность процесса линейного лазерного облучения. Металлографический анализ упрочненных с разными коэффициентами перекрытия участков показал, что наибольшая равномерность слоя по глубине достигается при коэффициенте перекрытия пятен 0,4-0,5.

На рисунке 8. приведены экспериментально полученные зависимости твердости и глубины упрочненного слоя на стали Р6М5 при облучении с длительностью импульса t имп ~1× 10 -3 с и t имп ~6× 10 -3 с, которыми можно пользоваться при выборе режимов лазерной обработки инструмента с корректировкой на технологические особенности лазерной установки и химический состав облучаемой стали.

Следует отметить, что одной из особенностей работы пар трения является неравномерность их изнашивания по поверхности контакта сопряженных деталей или детали и инструмента, которая вызывается неравномерностью рабочих давлений и скоростей скольжения, многократными смещениями контактирующих поверхностей друг относительно друга, повторными приложениями нагрузки. Это приводит к дополнительным пластическим деформациям, к контактному усталостному разрушению неровностей сопряженных поверхностей и вызывает быструю потерю работоспособности.

В этой связи перспективной является лазерная обработка, с помощью которой осуществляется создание закономерно изменяющегося состояния поверхностных слоев сопряженных изделий с целью обеспечения равномерного и минимального по величине износа по всей поверхности контакта на основе экспериментального и теоретического определения закономерностей его изнашивания.

Технологически это обеспечивается лазерной обработкой с изменяющимися режимами в процессе упрочнения вдоль поверхности контакта и позволяет сохранять первоначальную геометрическую форму, определяющую работоспособность инструмента, повысить эксплуатационные свойства.

Для каждого конкретного инструмента и детали машин данные о коэффициенте перекрытия пятен, расфокусировке луча, плотности мощности излучения фиксируются в технологических картах.

Производственные испытания опытных партий металлообрабатывающего инструмента и технологической оснастки различного функционального назначения показали, что лазерное упрочнение и легирование повышают их стойкость в 2-5 раз и позволяют получить значительный экономический эффект при внедрении технологических процессов в производство.

1. Цель работы.

2. Краткая характеристика изученного способа термической обработки сталей и сплавов.

3. Общие принципы выбора схем лазерной термообработки для инструмента различного функционального назначения.

4. Основные параметры оптимизации режимов лазерной поверхностной обработки.

5. Выводы на основании полученных результатов.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Какой предварительной обработке подвергаются изделия перед проведением лазерной термообработки?

2. Обоснуйте выбор схем лазерного облучения отрезных резцов, концевых фрез и вырубных штампов.

3. Каким образом проводится корректировка режимов лазерной обработки для инструмента различного функционального назначения?

4. Перечислите основные параметры процесса лазерной термообработки материалов.

5. Как зависят результаты лазерного упрочнения от коэффициента перекрытия облученных пятен?

6. Объясните зависимость твердости упрочненных зон от плотности мощности лазерного излучения.

  • Специальность ВАК РФ05.14.02
  • Количество страниц 132

1. Обзор методов оптимизации установившихся режимов работы электрических сетей

1.1. Методы оптимизации в электроэнергетике

1.2. Обзор литературы по математическим методам оптимизации

1.3. Современнное состояние методов оптимизации энергосистем

1.3.1. Моделирование объектов с помощью нейронных сетей

1.3.2. Использование нейронных сетей в электроэнергетике

2. Методические основы оптимизации установившихся режимов электроэнергетической системы

2.1. Оптимизация режима радиальной электрической сети.

2.2. Оптимизация установившихся режимов замкнутых сетей.

2.2.1. Влияние неоднородности на потери мощности в замкнутых сетях.

2.2.2. Физическая сущность дополнительных потерь в неоднородных сетях.

2.2.3. Влияние трансформаторов, входящих в замкнутый контур, на потери мощности.

2.3. Установившиеся режимы работы замкнутых сетей с линиями разных классов напряжений.

2.4. Выводы по главе

3. Оптимизация установившихся режимов сложных электрических сетей

3.1. Оптимизация уровня напряжений электропередачи

3.1.1. Вычисление оптимальной величины напряжения

3.1.2. Расчет оптимальной величины напряжения на линии электропередачи Финча -Адис-Аббеба

3.2. Оптимальное распределение реактивных мощностей в радиальных сетях.

3.3. Оптимальное распределение активной мощности между параллельно работающими станциями

3.3.1. Оптимальное распределение активной мощности в электрической сети

3.3.2. Оптимизация распределения активной нагрузки между гидроэлектростанциями Эфиопии

3.4. Оптимизация режимов в сетях сложной конфигурации

3.4.1. Модификация путем объединения в один процесс расчет установившегося режима и его оптимизацию

3.4.2. Оптимальное распределение потоков реактивной мощности сложно-замкнутых сетях

3.5. Выводы по главе

4. Оптимизация установившихся режимов электроэнергетической системы Эфиопии

4.3. Исследование оптимальных режимов 86 4.3.1 Оптимизация режима по реактивной мощности

4.4. Выводы по главе

Рекомендованный список диссертаций

  • Применение управляемых шунтирующих реакторов для оптимизации режимов работы энергосистемы Монголии 2003 год, кандидат технических наук Равжиндамба Давааням

  • 2003 год, кандидат технических наук Малафеев, Алексей Вячеславович

  • Эффективность применения управляемых шунтирующих реакторов в системе электропередачи Египта и по длинным линиям между Конго и Египтом 2008 год, кандидат технических наук Мостафа Мохамед Дардеер Ахмед

  • Оптимизация режимов энергосистемы Северо-Запада на основе применения фазорегулирующих устройств 2007 год, кандидат технических наук Фролов, Олег Валерьевич

  • Управление компенсацией реактивной мощности промышленных узлов нагрузки 2001 год, кандидат технических наук Кирилина, Ольга Ивановна

Введение диссертации (часть автореферата) на тему «Оптимизация установившихся режимов работы энергосистемы Эфиопии по напряжению и реактивной мощности»

Оптимизация режима работы электроэнергетической системы в самом общем виде означает минимизацию затрат на выработку, передачу и распределение электроэнергии. При оптимизации энергоресурсов системы необходимо определить общие характеристики самой системы. В нашем случае это энергосистема Эфиопии, поэтому приведем вначале общие сведения о стране и ее электроэнергетической системе.

Эфиопия - крупное государство в северо-восточной Африке, которое граничит на севере и западе с Суданом, на востоке с Сомалийской демократической республикой и республикой Джибути, на юге с Кенией (см. рис.1.). Площадь Эфиопии составляет 1130 тыс. кв. км. По данным Центральной Статистической Организации население Эфиопии -58 млн. чел.

TheGahb.s^l Burkina / "

Gain.-Biss"aui ""Л /

Guine"ai rrTLil.L. . i у-\ \ "-4 £ Э-""" Nigeria / i, S i erra Lpone;-, riWOK>a? S dS" / "S т X- "lCoas

Liberia, \ /СамеД roon \

Рис.1. Географическое положение Эфиопии. Эфиопия расположена в наиболее высокой части восточной Африки, 40% ее территории отличается чрезвычайным разнообразием рельефа и природных условий. Высокогорья здесь соседствуют с глубокими тектоническими впадинами, что обуславливает резко выраженную контрастность природных ландшафтов. Больше половины территории страны занимают горы, не случайно Эфиопию называют "Африканским Тибетом". Остальная часть равнины: плато Огаден на Юго-востоке, Данакильская пустыня на Северо-востоке и низменность на крайнем Западе в бассейне реки Баро. Самая высокая вершина Эфиопии гора Рас-Дашэн (4 623 м. над уровнем моря), самое низкое место - Данакильскоя впадина (113 м. ниже уровня моря).

Хотя южная граница Эфиопии почти доходит до экватора, а вся страна в целом расположена в субэкваториальном поясе, ее климат благодаря горному рельефу очень разнообразен. В районе Данакильский пустыни, считающейся одним из самых жарких мест на земле, среднегодовая температура 25°С. На горных хребтах нередки заморозки и выпадает снег. В горах велики и суточные колебания температуры от 0° ночью и до +30°С днем.

В Эфиопии самое большое поголовье скота на Африканском Континенте. Около 90% населения страны занято в сельском хозяйстве. Доход государства составил 1190.2 млн. долларов США в 1996/97 году. Основные продукты сельскохозяйственного производства: зерно(маис) -1.711 тонн; сахарный тростник - 1.700 тонн; ячмень - 1.236 тонн; пшеница -1.180 тонн; картофель -350 тонн; пшено - 233 и кофе - 198 тонн.

Важнейшей экономической задачей правительства страны является удвоение ВНП на душу населения, который сегодня составляет 468 долларов США в год (данные 1999 года), в 1993 году этот показатель составлял 100 долларов.

Copyright © Rand McNally & Company or its licensors. All rights reserved, http://www.randmcnally.com

Рис.2. Подробная карта Эфиопии. Правительство Эфиопии, понимая важность развития инфраструктуры и привлечения капиталовложений в страну, приступило к реализации программ развития инфраструктуры в области транспорта, телекоммуникаций и энергоснабжения (см. рис.2.). В Эфиопии имеется в избытке достаточно многочисленная и недорогая рабочая сила.

Наиболее сложной государственной проблемой является вода. До 85% нильской воды состоит из Голубого Нила, берущего свое начало в высокогорных районах Эфиопии, остальная его часть начинается в холмах Бурунди, и прежде, чем достичь Египта протекает через район суданских болот. Хотя Египет находится в нижнем течении Нила, он использует львиную долю его воды. До сих пор египетская вода находилась в относительной безопасности, т.к. африканские соседи Египта были менее экономически развиты, раздираемы гражданскими войнами и поэтому слишком слабы для того, чтобы контролировать нильские истоки. Такое положение вещей уходит в прошлое, после окончания гражданской войны началось активное экономическое развитие Эфиопии. Ее население, численность которого уже такая же, как и в Египте, быстро растет. Сотни малых дамб, главным образом для орошения, строятся сейчас в Эфиопии, и планируется соорудить 4 плотины, две из них на Ниле. Как планируется, эти плотины не окажут существенного воздействия на мощность водного потока, ибо они предназначены для производства энергии, а не для ирригационных систем.

Население голодает в районах, страдающих от засухи. Эфиопия должна эффективно использовать воду, чтобы решить проблему голода. В отличие от гидроэнергетических проектов ирригационные проекты малы и не оказывают сильного воздействия на водный поток. Эти проекты относятся к внутренним программам. Однако это не означает, что они не имеют никакого отношения к Египту. Правительство Эфиопии тщательно управляет и контролирует осуществление этих программ.

Электроэнергетика Эфиопии представлена в основном гидроэлектростанциями. В настоящее время в Эфиопии действуют пять больших и пять мелких гидроэлектростанций. Крупнейшая ГЭС страны -"Мелка-Вакана" на реке Вабе (около города Додола) мощностью 152 Мвт (4*38 Мвт), ГЭС Кока на реке Аваш (около города Кока) мощностью 43,2 Мвт (3*14,4 Мвт), ГЭС Финча мощностью 100 Мвт (3*33,3 Мвт), ГЭС Аваш! и АвашН мощностью 64 Мвт (4*16 Мвт) и другие. Расположение основных электростанций показано на рис.3. Общая установленная мощность всех электростанций страны около 400 Мвт.

J Аваш, r . \ l Dawa

Addis ftbak/- и. к / ■о \ / r7~~

Jirria М-ВаканаЛ f ^

Рис.3. Расположение основных гидроэлектростанций.

Существующие в стране линии электропередачи невелики (общая протяженность около 1500 км.) Напряжение линий электропередачи 45, 132 и 230 кВ. В стране существует государственная объединенная энергосистема, в которую входят четыре электростанции. Она обслуживает нужды столицы и прилегающих населенных пунктов. Остальные провинции страны снабжаются электроэнергией от изолированных ГЭС и небольших дизельных электростанций.

Поскольку в стране существует большое число рек, намечена разработка схемы дальнейшего развития электроэнергетики Эфиопии с выбором первоочередных ГЭС. К 2000 году в стране будет построена еще одна крупная ГЭС на реке Гилгелгибе, которая будет снабжать западную часть страны на напряжении 230 кВ.

В настоящее время в столице Эфиопии Аддис-Абебе расположены восемь подстанций в различных районах. Среди существующих подстанций наиболее крупные подстанции имеют трансформаторы мощностью 22 МВА, а самые маленькие подстанции имеют трансформаторы мощностью 4 МВА. В результате значительного прироста городского населения возникает проблема электроснабжения городов. Решение этой проблемы предусматривает реконструкцию существующих и создание новых городских подстанций и распределительных сетей. В 1993 году в стране произведено 1,386,956 тыс. кВт*ч. электроэнергии.

Возвращаясь к проблеме оптимизации, отметим, что входящие в энергосистему гидроэлектростанции работают по графикам, определяемым водным режимом рек и межгосударственными соглашениями. Поэтому в работе рассматривается оптимизация режима работы электрической сети. При заданной выработке активной мощности, решаем задачу оптимизации распределения реактивной мощности. В замкнутой электрической сети выбираем коэффициенты трансформации и уровни напряжений, отвечающие оптимальному распределению реактивной мощности и минимуму потерь. Решению этих актуальных вопросов и посвящена настоящая диссертационная работа.

В первой главе работы сделан обзор литературы по математическим и техническим вопросам оптимизации. В этом разделе сделана попытка систематизации общего списка литературы по рассматриваемому вопросу по разделам. В работе отмечается, что в практике используются программные средства, позволяющие проводить оптимизационные расчеты в сложных схемах. Рассмотрены перспективные методы моделирования и оптимизации электрических режимов с помощью искусственных нейронных сетей. Однако, учитывая экономические возможности Эфиопии, основной акцент в работе сделан на простейшие методики оптимизации электрических режимов.

Вторая глава посвящена рассмотрению методических вопросов оптимального распределения потоков мощности в разомкнутых и замкнутых сетях. Понимание причин возникновения дополнительных потерь мощности в сетях позволяет правильно решить задачу оптимизации. Отмечается, что причинами дополнительных потерь мощности в сетях являются потоки реактивной мощности и неэкономичное распределение нагрузки между электростанциями. Уравнительные потоки реактивной мощности возникают в замкнутых сетях из-за неуравновешенных коэффициентов трансформации и неоднородности сетей. Отдельно анализируется оптимальный выбор уровня рабочего напряжения в передающих и распределительных сетях. Для радиальных сетей получены выражения для определения величины мощности компенсирующий устройств, отвечающих минимуму потерь.

Третья глава посвящена исследованию методов оптимизации режимов электрических сетей как для простых, так и для сложных схем. Проведено сопоставление для простейшей электропередачи метода приведенного градиента и ручной оптимизации. Получено аналитическое выражение для оптимального распределения активной мощности с учетом потерь в сети с двухсторонним питанием. Отмечается, что в условиях рыночных отношений в энергетике, для энергоснабжающих организаций целесообразно проводит оптимизацию финансовых затрат на приобретение и передачу электроэнергии, а не по минимуму затрат на условное топливо.

Четвертый раздел диссертационной работы посвящен созданию модели энергосистемы Эфиопии и проведению в ней исследований по экономичности режимов работы. При упрощении схемы эквивалентировались мелкие нагрузочные узлы. Для оптимизации использовалась упрощенная схема. В этой главе на основе предложенной методики были сделаны расчеты по оптимизации распределения активной мощности между параллельно работающими гидростанциями. Затем определяется оптимальный уровень напряжений в линиях электропередачи и оптимальное распределение потоков реактивной мощности.

В заключении отмечены основные выводы по диссертационной работе.

Диссертация включает введение, четыре главы и заключение, изложенные на 115 страницах. Содержит 17 рисунков, 33 таблиц, список литературы из 131 наименований. Общий объем работы 134 страниц.

Похожие диссертационные работы по специальности «Электростанции и электроэнергетические системы», 05.14.02 шифр ВАК

  • Разработка и применение математических моделей для расчета установившихся и динамических режимов ЭЭС, содержащих устройства управляемой поперечной компенсации 2006 год, кандидат технических наук Ебадиан Махмуд

  • Улучшение режимных характеристик электроэнергетической системы (Бангладеш) осуществлением управляющих воздействий 2001 год, кандидат технических наук Ислам Мд. Нурул

  • Исследование режимов работы, обоснование путей развития и повышения эффективности Тюменской энергосистемы 2000 год, кандидат технических наук Васильев, Виктор Алексеевич

  • Режимы и устойчивость межсистемной транзитной электропередачи 330 кВ Кольская АЭС - Ленэнерго с управляемыми устройствами компенсации реактивной мощности 2008 год, кандидат технических наук Смирнов, Владимир Александрович

  • Совершенствование методов и средств управления режимами электроэнергетических систем на основе элементов гибких электропередач (FACTS) 2009 год, доктор технических наук Ситников, Владимир Федорович

Заключение диссертации по теме «Электростанции и электроэнергетические системы», Лемма Берека Г/Мескел

3.5. Выводы по главе

1. В разделе 3.1 рассмотрена методика оптимизации уровня напряжения в линии электропередачи и показано, что для слабозагруженных линий 220 кВ потери на корону и нагрев сопоставимы. Приведенные в 3.1.2. графики показывают, что для линии Финча - Адис- Аббеба оптимальным является напряжение 225-230 кВ.

2. Исследовано и получено выражение для расчета оптимального распределения реактивных мощностей в радиальных схемах (3.10).

3. В работе проанализированы условия оптимального распределения активной мощности в электрических сетях и получено выражение (3.12) для расчета оптимальных значений мощности в сетях с простой конфигурацией.

4. Проведено сопоставление предложенного метода оптимизации распределения активной мощности с методом нелинейного программирования и показано, что разработанная упрощенная методика дает вполне хорошие результаты.

5. В разделе 3.3.2. вычислены оптимальные значения потоков активной мощности, с учетом потерь в линиях, для энергосистемы Эфиопии для трех уровней потребляемой мощности.

6. В разделе 3.4 проведен анализ и сопоставление методик оптимизации распределения реактивных мощностей в сложных электрических сетях.

Глава 4. Оптимизация установившихся режимов электроэнергетической системы Эфиопии

На основе рассмотренных ранее методов оптимизации в настоящей главе в качестве примера проведем оптимизацию режима для энергосистемы Эфиопии. Поскольку Эфиопия относится к категории бедных стран, то использование программ комплексной оптимизации, например «спайдер» концерна ABB, невозможно по причине высокой стоимости необходимого оборудования и программного обеспечения. Работа в условиях ограниченных материальных ресурсов, выдвигает на первый план задачу повышения экономичности работы энергосистемы. Снижение потерь мощности и энергии дает дополнительные ресурсы для развития промышленности и сельского хозяйства. При общей установленной мощности электростанций 400 МВт снижение потерь на 1015% сулит значительную выгоду, а как отмечалось выше экономия может быть и больше.

Общую методику оптимизации режима энергосистемы, предлагаемую в диссертации, можно описать следующим образом:

1. нахождение оптимального распределения активной мощности между электростанциями с учетом потерь линиях основной сети;

2. выбор оптимального уровня напряжений и распределения реактивной мощности между электростанциями;

3. процедуры дооптимизации, т.е. оптимальное регулирование напряжений и реактивной мощности в распределительной сети.

4.1. Составление расчетной схемы энергосистемы Эфиопии

В процессе выполнения практической части работы нам пришлось столкнуться со сложностями получения данных по энергосистеме. За основную принята схема, полученная от Эфиопской энергетической корпорации, которая приведена на рис. 4.1. На схеме приведены основные сети напряжением от 15 до 230 кВ. Моделирование линий электропередачи осуществлялось на основе п-образной схемы замещения. Параметры схем замещения принимались по данным энергетической корпорации «Характеристики линий электропередачи высокого напряжения в ЭС Эфиопии» (приложение 1.). Следует обратить внимание на двухцепную линию от ГЭС М-Вакана до подстанции Кока длиной 164 км и напряжением 230 кВ, зарядная мощность этой линии составляет 53 МВАр. Для обеспечения нормальной работы системы на подстанциях установлены шунтирующие реакторы. Примерно такие же параметры имеет линия Финча - Маркое, а линия Маркое - Бахидар имеет длину 195 км, очевидно, что на этих линиях так же необходима установка реакторов. В рассматриваемой таблице приведены данные по 100 линиям напряжением 230, 132, 66 и 45 кВ. Данные по нагрузкам были взяты из таблицы «Пиковая и средние значения нагрузок основных районных подстанций» (приложение 2.). Для определения расчетного значения реактивной нагрузки принималось среднее значение coscp =0.9. По имеющимся данным была получена модель энергосистемы Эфиопии, схема которой приведена на рис.4.2. Параметры схемы замещения даны в таблице (приложение 3.).

Для полученной модели были произведены серии расчетов установившихся режимов работы энергосистемы Эфиопии. Поскольку данных по режимам работы реальной энергосистемы получить не удалось, то рассматривались режимы, отвечающие допустимым значениям перетоков мощности и уровням напряжений в узловых точках сети. cohbou.iu

Рис.4.1. Схема энергосистемы Эфиопии оо l>->

Оценка эффективности предлагаемых мероприятий оценивалась по снижению величины потерь мощности. Отдельно рассматривались потери для каждого класса напряжений и отдельно в трансформаторах и линиях. Пример таблицы потерь приведен на рис. 4.3.

4.2. Построение эквивалентных схем для энергосистемы Эфиопии

На основе расчетной схемы была построена эквивалентная модель для которой и определялось оптимальное распределение активной мощности между электростанциями. Для получения эквивалента в схеме были выбраны эквивалентируемые, сохраняемые и узлы примыкания. Произведен расчет режима для исходной схемы. Эквивалентирование выполнялось таким образом, чтобы режим сохраняемых узлов не менялся. Эквивалентирование выполнялось раздельно для мощностей генерации и нагрузки. В узлах примыкания, к оставшейся без изменения части схемы, подключаются эквивалентные нагрузки или генерация. Вариант промежуточного эквивалента схемы приведен на рис. 4.4.

Рис.4.3. Таблица потерь.

Рис.4.4. Промежуточный эквивалент схемы энергосистемы Эфиопии

Затем процедура эквивалентирования была повторена еще раз и окончательный вид эквивалентной схемы показан на рис. 4.5. Следует отметить, что потери эквивалентируемых узлов включались в мощность нагрузки и поэтому данная схема может использоваться для расчета оптимального распределения мощности между станциями.

Рис. 4.5. Эквивалентная схема энергосистемы Эфиопии.

Для этой схемы и решалась задача оптимального распределения мощности, как методом линейного программирования, так и по (3.12).

4.3. Исследование оптимальных режимов

В качестве примера оптимизации рассмотрим первый режим работы энергосистем с суммарной нагрузкой 200 МВт. Распределение мощностей между станциями, отвечающее оптимальному режиму для этого варианта нагрузки приведено на рис.4.6. Загрузка станций соответствует результатам, полученным в разделе 3.3.2,

ОПТ Р=200 Si=65.7 S2=74.7 S3=31.5 S4=28.2 AP=4.48 МВт

Соответствующие этому режиму потери показаны в табл.4.1.

Заключение

1. Рассмотрены различные режимы работы замкнутой электрической сети и показано, что существуют две физические причины возникновения дополнительных потерь мощности - это неоднородность сопротивлений схемы замещения и несбалансированные коэффициенты трансформации.

2. В работе подробно исследована физическая сущность дополнительных потерь, вследствие неоднородности сети, и показано, что из-за несбалансированных составляющих падение напряжения в контуре появляются уравнительная ЭДС и ток, являющиеся причиной увеличения потерь.

3. С помощью классического исследования на экстремум подтверждено, что минимуму потерь замкнутых сетей, отвечает распределение по активным сопротивлениям.

4. Исследованы и объяснены причины неравномерного распределения мощностей по параллельно работающим линиям электропередачи разных классов напряжения.

5. В работе проанализированы условия оптимального распределения активной мощности в электрических сетях и получено выражение (3.12) для расчета оптимальных значений мощности в сетях с простой конфигурацией.

6. Проведено сопоставление предложенного метода оптимизации распределения активной мощности с методом нелинейного программирования и показано, что разработанная упрощенная методика дает вполне хорошие результаты.

7. Правильность методических положений работы и полученных результатов подтверждены многократными расчетами установившихся режимов для энергосистемы Эфиопии, выполненые с помощью программы РАСТР.

8. Показано, что среди множества реализуемых режимов оптимальный имеет наименьшие потери активной мощности в сети, причем в других режимах потери могут быть больше на 20-30%.

9. Целесообразность оптимизации режима по реактивной мощности подтверждена результатами расчетов, представленных в разделе 4.3.1.

10.Результаты расчетов режимов, выполненные с помощью программы РАСТР и приведенные в главе 4 подтверждают справедливость выводов предыдущих разделов работы.

Список литературы диссертационного исследования кандидат технических наук Лемма Берека Г/Мескел, 2002 год

1. Александров О.И., Бабкевич Г.Г. Оперативные алгоритмы расчета потокораспределения в сложной ЭЭС. Электронное моделирование. 1992,- 14, N6. С.66-70.

2. Аммар Бен Салем. Комплексная оптимизация развития объединенной энергосистемы стран Союза Арабского Магриба. Автореф. дисс. канд. эконом, наук, С-Петербург. 1994.

3. Анализ и управление установившимися состояниями электроэнергетических систем. /Н.А. Мурашко, Ю.А. Орхозин, JI.A. Крумм и др. Новосибирск: Наука. Сиб. Отд, 1987.

4. Андерсон П., Фуад А. Управление энергосистемами и устойчивость:/ Пер. с англ. под ред. Я.Н. Лугинского. М.: Энергия, 1980.

5. Аоки М. Введение в методы оптимизации. М.: Наука, 1977.

6. Арзамасцев Д.А. Введение в многоцелевую оптимизацию энергосистем. Свердловск: Изд. УПИ, 1984.

7. Арзамасцев Д.А. и др. АСУ и оптимизация режимов энергосистем: Учеб. Пособие. -М.: Высш. Шк.,1983.

8. Арзамасцев Д.А. и др. Модели оптимзации развития энергосистем: Учебник. М.: Высш. Шк., 1987.

9. Ашманов С.А. Линейное программирование: Учеб. Пособие. -М.: Высш. Шк., 1981

10. Ашманов С.А., Тихонов А.В. Теория оптимизации в задачах и упражнениях. -М.: Высш. Шк., 1981.

11. Баринов В.А., Совалов С.А. Режимы энергосистем: Методы анализа и управления. -М.: Энергоатомиздат. 1990.

12. Баркан Я.Д. Автоматизация режимов по напряжению и реактивной мощности: Из опыта Латвглавэнерго. М.: Энергоатомиздат, 1984.

13. Бондаренко А.Ф., Морозов Ф.Я., Окин А.А., Семенов В.А. Концепция оперативно-диспетчерского управления ЕЭС России в рыночных условиях. Сборник статей «Проблемы диспетчерского и автоматического управления». М.: Издательство МЭИ, 1997.

14. Вариационное исчисление и оптимальное управление: Учебник/под ред. В.С.Зарубина -М.: Изд-во МГТУ им. Н.Э. Баумана, 1999.

15. Васильев В.П. Численные методы решения экстремальных задач. -М.: Наука, 1980.

16. Васильков Ю.Н., Василькова Н.Н., Компьютерные технологии вычислений в математическом моделировании: Учебн. Пособие. -М.: Финансы и статистика, 1999.

17. Веников В.А. и др. Оптимизация режимов электростанций и энергосистем: Учебник.- М.: Энергоатомиздат, 1990.

18. Веников В.А. Переходные электромеханические процессы в электрических системах: Учебник для электроэнергетич. спец. вузов. Изд. 4-е. М.: Высшая школа, 1985.

19. Веников В.А., Головицын Б.И., Лисеев М.С. Исследование некоторых алгоритмов управления стационарными режимами электроэнергетических систем. Изв. АН СССР. Энергетика и транспорт, 1973 №4, с.3-16.

20. Веников В.А., Жуков Л.А., Поспелов Г.Е. Электрические системы: Режимы работы электрических сетей и систем. М.: Высш. Шк., 1975.

21. Веников В.А., Идельчик В.И., Лисеев М.С. «Регулирование напряжения в электроэнергетических системах.» М.: Энергоатомиздат, 1985.

22. Веников В.А., Литкенс И.В. Математические основы автоматического управления режимами электросистем.-М.: Высшая школа, 1964.

23. Волков Г.А. Оптимизация надежности электроэнергетических систем. -М.: Наука. 1986.

24. Воропай Н.И. Упрощение математических моделей динамики электроэнергетических систем. Новосибирск: Наука. Сиб. Отд, 1981.

25. Габасов Р., Кириллова Ф.М. Методы оптимизации. Минск.: Изд-во БГУ, 1975.

26. Галушкин А. Современные направления развития нейрокомпьтерных технологий в России./ Открытые системы. 1997, №4.

27. Гамм А.З., Герасимов Л.Н., Голуб И.И., и др. Оценивание состояния в электроэнергетике. -М.: Наука, 1983.

28. Гамм А.З., Крумм Л.А. Методы оптимизации режима сложных электроэнергетических систем при случайном характере исходной информации. Изв. АН СССР. Энергетика и транспорт. 1972, №1. с.46-60

29. Герасимов С.Е., Горюнов Ю.П., Евдокунин Г.А., Иванов С.А. «Численные и аналитические методы анализа режимов электрических систем. Учебное пособие.» Л.: издательство ЛПИ, 1986.

30. Герасимов С.Е., Лемма Берека, Сендажи А. Оптимизация распределения нагрузки между электростанциями. Материалы научной конференции студентов и аспирантов. С-Пб.: Издательство С-ПбГТУ, 1999.

31. Герасимов С.Е., Лемма Берека. Методы оптимизация режимов распределительных сетей. Формирование технической политики инновационных наукоемких технологий. 14-16 июня 2001 г., С-Пб.: Издательство С-ПбГТУ, с.51-54.

32. Герасимов С.Е., Лемма Берека. Оптимизация режима радиальной электрической сети. Материалы Всероссийской научно-технической конференции: «Фундаментальные исследования в технических университетах» 8-10 июня 2000 г., С-Пб.: Издательство С-ПбГТУ, с.127.

33. Герасимов С.Е., Лемма Берека. Проектирование системы электроснабжения столицы Эфиопии Адисс-Абебба. Современные научные школы: Перспективы развития. Материалы научной конференции студентов и аспирантов. С-Пб.: Издательство С-ПбГТУ, 1998.

34. Герасимов С.Е., Меркурьев А.Г. Регулирование напряжения в распределительных сетях. С-Пб., С-3 филиал АО «ГВЦ Энергетики» 1997.

35. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. -М.: Мир, 1985.

36. Горбань А.Н. Обучение нейронных сетей. М.": изд. СССР-США СП "ParaGraph", 1990. 160 с.

37. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. Новосибирск: Наука, 1996.

38. Горнштейн В.М. Методы оптимизации режимов энергосистем. М.: Энергоиздат, 1981.

39. Гуссейнов Ф.Г. Упрощение расчетных схем электрических систем. -М.: Энергия, 1978.

40. Дальние электропередачи 750 кВ: Сборник статей / Под ред. А.М.Некрасова и С.С. Рокотяна, М.: Энергия, 1975.

41. Дубицкий Г.А. Советчик диспетчера для быстрой коррекции режима

42. ОЭЭС по активной мощности / Советчики диспетчера по оперативной коррекции режимов работы ЭЭС. Иркутск, 1984.

43. Дьяков А.Ф., Окин А.А., Семенов В.А. Диспетчерское управление мощными энергообьединениями. -М.: Издательство МЭИ, 1996.

44. Жданов П.С. Вопросы устойчивости электрических систем. -М.: Энергия. 1979.

45. Железко Ю.С. «Компенсация реактивной мощности в сложных электрических системах.» М.г Энергоатомиздат, 1981.

46. Железко Ю.С. «Компенсация реактивной мощности и повышение качества электроэнергии.» М.: Энергоатомиздат, 1985.

47. Идельчик В.И. «Электрические системы и сети.» М.: Энергоатомиздат, 1989.

48. Идельчик В.И. «Расчеты установившихя режимов электрических сетей. Под редакцией Веникова В.А.» М.: Энергия, 1977.

49. Каменский М.Д. Электрические системы. Госэнергоиздат. 1952.

50. Конюховский П.В. Математические методы исследования операций в экономике.-СПб.: Издательство Питер,2000.

51. Короткевич A.M. совершенствование методов оптимизации режимов энергосистемы по напряжению и реактивной мощности. Автореф. дисс. канд. техн. наук, Минск. 2000.

52. Крумм Л.А. Методы приведенного градиента при управлении электроэнергетическими системами. Новосибирск: Наука, 1977.

53. Лебедев С.А., Жданов П.С., Городский Д.А., Кантор P.M. Устойчивость электрических систем. М.: Госэнергоиздат, 1940.

54. Лебедева Л.М. Методы и алгоритмы оптимизации расчетных режимов при оценке надежности сложных электроэнергетических систем. Автореф. дисс. канд. техн. наук, Иркутск, 1998.

55. Левинштейн М.Л., Щербачев О.В. Статическая устойчивость электрических систем. Учебное пособие, СПб.: СПбГТУ, 1994.

56. Лисеев М.С. К задаче автоматизации регулирования режимов электрической системы по напряжению и реактивной мощности. -Изв. АН СССР. Энергетика и транспорт, 1973 №2, с.91-98.

57. Лисеев М.С. Применение методов математического программирования к решению задач оперативного управления режимами электрических систем по напряжению и реактивной мощности. Изв. вузов. Энергетика, 1973 №8, с. 12-16.

58. Лисеев М.С., Эль-Саях С. Метод расчета наивыгоднейшего распределения реактивных мощностей в районных сетях. Изв. АН СССР. Энергетика и транспорт, 1979 №5, с.80-86.

59. Мельников Н.А. Реактивная мощность в электрических сетях. -М.: Энергия, 1975.

60. Мельников Н.А. Электрические сети и системы. -М.: Энергия, 1975.

61. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. -М.: Наука. Гл.ред. ф-м.л., 1978.

62. Нейман Л.Р., Демирчан К.С. Теоретические основы электротехники. Т.1;т.2.-Л.: Энергоиздат, 1981.

63. Неклепаев Б.Н., Крючков И.П. «Электрическая часть станций и подстанций. Справочные материалы для курсового и дипломного проектирования: Учебное пособие для ВУЗов.»-М.: Энергоатомиздат, 1984.

64. Новгородцев А.Б. 30 лекций по теории электрических цепей: Учебник для вузов. СПб.: Политехника, 1995.

65. Оптимальные режимы работы энергосистем: Сб. научн. Трудов/ВНИИЭ. -М.: Энергоатомиздат. 1985.

66. Петренко Л.И. Электрические сети и системы. Киев: Вища школа, 1981.

67. Петров Ю.П. Вариационные методы теории оптимального управления.-Л.: Энергия. 1977.

68. Петров Ю.П. Три очерка по истории оптимизации и оптимального управления.- СПб.: ООП НИИХ, 1998.

69. Поляк Б.Т. Введение в оптимизацию. -М.: Наука, 1983.

70. Поспелов Г.Е., Сыч Н.М. Потери мощности и энергии в электрических сетях. М.: Энергоиздат, 1981.

71. Поспелов Г.Е., Сыч Н.М., Федин В.Т. Компенсирующие и регулирующие устройства в электрических системах. Л.: Энергоатомиздат, 1983.

72. Поспелов Г.Е., Федин В.Т. Электрические системы и сети: Проектирование. Мн.: Выш. Шк., 1988.

73. Проектирование линий электропередачи сверхвысокого напряжения/ Под ред. Г.Н. Александрова. СПб.: Энергоатомиздат, Сант-Петербургское отделение, 1993.

74. Расчеты и анализ режимов, программирование и оптимизация работы сети. Под редакцией / В.А. Веникова. М., 1974.

75. Рейклейтис Г., Рейвиндран А., Рэгсдел К, Оптимизация в технике: -М.: Мир, 1986.

76. Рокотян И.С., Федоров Д.А. «Применение методов математического программирования для выбора оптимальной конфигурации сети» .М.: Высш. Шк., 1999.

77. Рябокрис И.Ф. Компенсация реактивной мощности в электрических сетях. -Киев: Укр. ВИНИТИ, 1976.

78. Системы: декомпозиция, оптимизация и управление/ Сост. М. Сингх, А. Титли; М.: Машиностроение, 1986.

79. Совалов С.А., Семенов В.А. Противоаварийное управление в энергосистемах. -М.: Энергоатомиздат, 1988.

80. Солдаткина JI.А. «Электрические сети и системы.» М.: Энергия, 1978.

81. Справочник по проектированию электроэнергетических систем / В.В. Ершевич, А.Н. Зейлигер, Г.А. Илларионов и др.; Под ред. С.С. Рокотяна и И.М. Шапиро. М.: Энергоатомиздат, 1985.

82. Справочник по электрическим установкам высокого напряжения / Под ред. И.А. Баумштейна, С.А. Бажанова. М.: Энергоатомиздат, 1989.

83. Статические компенсаторы для регулирования реактивной мощности. Под. ред. P.M. Матура. М.: Энергоатомиздат, 1987.

84. Строев В.А., Рокотян И.С. «Методы математической оптимизации в задачах электроснабжения» М.: Высш. Шк., 1998.

85. Тарасов В. И. Особенности алгоритмической и программной реализации методов минимизации при решении уравнений установившихся режимов электроэнергетических систем. Журнал "Электричество ", 2/1997 год.

86. Терехов В.А., Ефимов Д.В., Тюкин И.Ю., Антонов В.Н. Нейросетевые системы управления. С-Пб.: Изд-во С-Пб Университета, 1999.

87. Турчак Л.И. Основы численных методов: Учебное пособие.М.: Гл. ред. Ф-М.Л.,1987.

88. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика./ Пер. с англ. М.: Мир, 1992.

89. Фазылов Х.Ф., Юлдашев Х.Ю. Оптимизация режимов электроэнергетических систем. -Ташкент.: ФАН. 1987.

90. Ханина Е.П. Оптимизация режимов работы ЭЭС с учетом особенностей рыночной экономики. Автореф. дисс. канд. техн. наук, Новосибирск, 1997.

91. Холмский В.Г. Расчет и методы оптимизации режимов электрических сетей (специальные вопросы). Учебное пособие. -М: Высш. Шк. 1975.

92. Цыпкин Я.З. Адаптация и обучение в автоматических системах. -М.: Наука, 1968.

93. Черненко П.А., Прихно B.J1. Оценка состояния и оптимизация по напряжению и реактивной мощности электроэнергетической системы. Техническая термодинамика, 1980, №5. с. 80-85. 96.Черноруцкий И.Г. Методы оптимизации: Учеб. Пособие. - СПб.:

94. Изд-во СПбГТУ, 1998. 97.Электрические системы и сети в примерах и иллюстрациях: Учеб.

95. Пособие. Под редакцией В.А. Строева,- М.: Высш. Шк., 1999. 98.Электрические системы. Под ред. В.А.Веникова. М.: Высш. Шк.1972.

96. Электрические системы. Электрические расчеты, программирование и оптимизация режимов. Под ред. В.А.Веникова. М.: Высш. Шк.1973.

97. Электропередачи 1150 кВ: Сб. ст.: В 2-х кн./Под ред. Г.А.Илларионова, B.C. Ляшенко. М.: Энергоатомиздат, 1992.

98. A.A.El-Keib, Х.Ма. Application of artificial neural net-works in voltage stability assessment. IEEE Trans, on Power Systems, vol.10, N4,Nov. 1995.

99. Aboreshaid S. , Billinton R., Fotuhi-Firuzabad M. Probabilistic Transient Stability Studies Using the Method of Bisection. IEEE Transaction on power System, Vol.11, No.4,November 1996.

100. D.J.Sobajic and oth. Real-time security monitoring of electrical power systems using parallel associative memory. IEEE.90 (2929-2932).

101. Dy Liacco Т.Е. Real-time computer control of power systems. -Proc. IEEE, 1974.

102. Grantham W. J. and Vincent T.L., Modern control systems analysis and design, John Wiley & Sons, Inc. New York, 1993.

103. H.C.Chang and oth. Neural networks based selforganizing Fuzzy Controller for transient Stability of Multi machine Power Systems. IEEE Trans, on Energy Conversion, vol.10, N2, June, 1995.

104. J.Plettner-Maraliani. Optimisation of the combination of power units in smoll electric grids. Annual report, vol 62, 1999 of the Institute of Power System and Economics, RWTH Aachen, Germany, -p.75.

105. Kamwa I., Farzaneh M. Data translation and order reduction for turbine-generator models used in network studies. IEEE Transaction on Energy Conversion.Vol.12, No.2,June 1997.-C.118-126.

106. Kuo В. C., Automatic control systems, Printice-Hall, Inc. New Jersey, 1987.

107. L.H.Jeng and oth. Damping of torsional Oscillations in a parallel AC/DC System using an artificial neural network tuned supplemental subsynchronous damping controller. Proc. Natl. Sci. Connc. Roc(A), vol.20, N2, 1996 (174-184).

108. Lewis F. L., and Syrmos V. L. Optimal control . John Wiley, New York, 1995.

109. Lof P.-A. On static analysis of long-term voltage stability in electric power system/ Royal Ins. Of Technology/ -Stockholm, 1995.

110. M.A.El-Sharkawi and oth. Localization of WindingShorts Using Fuzzi fied Neural networks. IEEE Trans, on Energy Conversion, vol.10, N1, March, 1995.

111. M.E.Aggoune and oth. Artificial neural networks for power system static security assessment. ISCAS.89 (490-494).

112. M.La Scala, M.Trovato, F.Torelli. A neural network based mehtod for voltage security monitoring. IEEE Trans, on Power Systems, vol.11, N3, Aug. 1996.

113. Marzio Leonardo. A new utility-user interface for a qualified energy consumption. Pattern Recogn. 1995. - 28, N10 - p. 1507-1515.

114. Ogata K., Modern control engineering, Prentice-Hall. 1970.

115. R.Fischl and oth. Screening power system contingencies using a back-propagation trained multiperceptron. ISCAS.89 (486-489).

116. R.I.Thomas and oth. On-line security screening using an artificial neural network. IEEE.90 (2921-2924).

117. S.R.Chaudhry and oth. An artificial neural network Method for the identification of Saturated Turbogenerator Parameters dased on a coupled Finite-Element/State-Space Computational algorinhm. IEEE Trans, on Energy Conversion, vol.10, N4, Dec. 1995.

118. Sakural Kyoko, Nishimura Kazuo, Hayashi Hideki. A practical method based on structured neural networks to optimize power system operation. Proc. Int. Jt Conf. Neural Networks, nagoya, Oct. 25-29, 1993: IJCNN"93 Nagoya. Vol.1. - Nagoya, 1993, p.873.

119. Santoso N. Iwan, Tan Owen T. Neural net based real-time control of capacitors installed on distribution systems. IEEE Trans. Power. Deliv. 1990 5, N1. - p.266-272.

120. Takuldar S.M. Computer aided dispatch for electric power.- Proc. IEEE, 1981.

121. Y.Zhang and oth. Artificial neural network power system Stabilizers in Multi-Machine Power System Snviroment. IEEE Trans, on Energy Conversion, vol.10, N1, March, 1995.

122. Flatabo "Application of Optimization techniques to study power system network performance". CIGRE SC 38 Reports, issue 174, 1997.

123. G.L. Torres, Quintana, V.H. "Optimal Power Flow by a Nonlinear Complementarity Method". IEEE Power Engineering Review, 2000.

124. H.G. Kwanti, A.K. Pasrija, and L.Y. Bahar, "Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse," IEEE Trans, on Circuits and Systems, vol.CAS-33, pp.981 - 991, Oct. 1986.

125. M.E.Aggoune. An artificial neural net based method for power system state estimation. Proc. Int. Jt Conf. Neural Networks, Nagoya, Oct. 25-29, 1993: IJCNN"93 Nagoya. Vol.2. Nagoya, 1993. - p. 1523-1526.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

6. 3 Управление потоками мощности в замкнутых электрических сетях Замкнутые электрические сети, как правило, являются неоднородными, xapaктеризующимися различным отношением Xi/Ri на участках. Неоднородность сети объясняется: - применением различных площадей сечений на разных участках; - наличием трансформаторов, соединяющих в контуре линии разных номинальных напряжений (в этом случае неоднородность особенно сильна). На рисунке 6. 5 естественная мощность, выходящая в линию от источника А, будет равна: (6. 18) 2

где i – номер узла нагрузки; n – число узлов нагрузки в сети. Для однородной сети выражение (6. 18) может быть записано через активные сопротивления участков: (6. 19) Рис. 6. 5 Схема сети: (а) - замкнутая; (б) – разрезанная по источнику 3 питания

Запишем выражение для потерь активной мощности в сети на рис. 6. 5: (6. 20) Выразим мощности S 12 и SБ через SА, S 1 и S 2: (6. 21) Подставим выражения (6. 21) в формулу (6. 20), заменив полные мощности через соответствующие активные и реактивные: (6. 22) 4

Найдем экономичные мощности РАэ и QАэ, соответствующие минимуму потерь активной мощности. Для этого возьмем частные производные выражения (6. 22) по РА и QА и приравняем их нулю: (6. 23) После преобразований получим: (6. 24) Или через полные мощности: (6. 25) 5

В общем виде (6. 25) будет выглядеть так: (6. 26) Сравнение выражения (6. 18) с (6. 26), а также (6. 19) с (6. 26) позволяет сделать следующие выводы: 1) в неоднородной сети естественное распределение мощностей не совпадает с экономичным. 2) в однородной сети естественное распределение мощностей одновременно является экономичным. Таким образом, можно сделать вывод о том, что неоднородность сети вызывает в контуре уравнительную мощность (6. 27) которая приводит к перераспределению потоков мощности по 6 ветвям и увеличению потерь мощности.

Отсюда следует, что для перехода от режима сети с естественным распределением мощностей к экономичному режиму необходимо в контуре компенсировать уравнительную мощность SУ. Это можно сделать, создав в контуре принудительную уравнительную мощность SУ. П, направленную навстречу SУ: (6. 28) Для получения мощности SУ. П в контур необходимо ввести соответствующую ЭДС EЭ. Тогда: (6. 29) где ZК – сопротивление контура. 7

Отсюда требуемая ЭДС EЭ: (6. 30) После преобразований получим продольную EЭ/ и поперечную EЭ// ЭДС, которые необходимо создать в контуре для получения экономичного распределения мощностей: (6. 31) (6. 32) 8

Src="https://present5.com/presentation/34965670_40079705/image-9.jpg" alt="Поскольку в сетях напряжением 110 к. В и выше X>>R, то, если принять R=0,"> Поскольку в сетях напряжением 110 к. В и выше X>>R, то, если принять R=0, тогда: (6. 33) (6. 34) Пример создания положительных уравновешивающих ЭДС EЭ/ и EЭ// показан на рисунке 6. 6, а, где U - напряжение с учётом воздействия ЭДС. Из формул (6. 33) и (6. 34) можно записать: (6. 35) (6. 36) 9

Отсюда следует, что введение в контур продольной ЭДС в основном оказывает влияние на перераспределение реактивных мощностей, а поперечной ЭДС – на перераспределение активных мощностей. Рис. 6. 6 Векторная диаграмма с ЭДС (а) и схема неоднородной замкнутой сети (б) 10

ЭДС в контуре создается трансформаторами, включенными в данный конур. Если в контуре содержится один трансформатор, то (6. 37) где U 0 – напряжение опорного узла; k. Т – коэффициент трансформации трансформатора, учитывающий изменение величины и фазы напряжения. Если в контур включено n трансформаторов, то (6. 38) где коэффициенты трансформации направлению обхода контура. подставляются по 11

Для создания продольной ЭДС достаточно иметь обычные трансформаторы (автотрансформаторы) с ответвлениями. В этом случае (6. 39) При этом трансформаторы с РПН позволяют получить в контуре регулируемую ЭДС. Для создания поперечной или продольно-поперечной ЭДС применяют специальные вольтодобавочные трансформаторы (ВДТ). Пример включения их в контур показан на рисунке 6. 6, б. 12

6. 4 Выбор установки трансформаторов регулирования в замкнутой сети поперечного Конкретный выбор числа и мест установки трансформаторов поперечного регулирования в замкнутой электрической сети с многими контурами и несколькими номинальными напряжениями представляет собой достаточно сложную задачу проектирования. Рассмотрим один из возможных алгоритмов решения данной задачи: 1) на основании расчетов режимов сети определяют естественное и экономичное распределение мощностей при номинальных коэффициентах трансформации трансформаторов связи; 2) находят по формуле (6. 28) требуемые принудительные уравнительны мощности в независимых контурах; 13

3) находят по формулам (6. 31) и (6. 32) параметры устройств продольно-поперечного регулирования для каждого независимого контура, при этом установку этих устройств предусматривают в цепях трансформаторов связи; 4) вводят поочередно устройства продольно-поперечного (поперечного) регулирования в каждый контур и определяют экономическую эффективность его установки. При этом для создания продольной ЭДС максимально использую возможности устройств РПН трансформаторов связи. Установка дополнительного устройства экономически целесообразна, если выполняется условие: (6. 40) где 3 Эt - доход, характеризующийся эффектом от снижения потерь электроэнергии в сети в год t; ИУ. П. Р. t, KУ. П. Р. t - годовые издержки и капитальные затраты на дополнительное устройство поперечного 14 регулирования в год t;

5) принимают к установке устройство поперечного регулирования, дающее наибольшее значение (6. 41) 6) расчеты по п. п. 1 -5 с учетом ранее выбранных устройств поперечного регулирования повторяют до тех пор, пока соблюдается условие (6. 40); 7) находят срок окупаемости каждого из дополнительных устройств поперечного регулирования и в зависимости от его численного значения принимают решение о целесообразности применения данного устройства. В связи с тем, что наибольшее снижение потерь мощности может иметь место как в режиме наибольших нагрузок, так и в других режимах энергосистемы, параметры устройств поперечного регулирования приходится выбирать на основе анализа ряда характерных режимов и их продолжительности. 15

6. 5 Оптимизация режимов работы замкнутых сетей с помощью установок продольной компенсации В связи с тем, что в однородных замкнутых сетях естественное распределение мощностей совпадает с экономичным, переход к экономичному режиму возможен путем настройки сети на однородную. Отметим, однако, что такой способ мало пригоден для сложнозамкнутой сети. Он может быть рассмотрен применительно к одному контуру либо к двум параллельным воздушной и кабельной линиям (рисунок 6. 7). Рис. 6. 7 Схемы неоднородных сетей: (а) – замкнутой; (б) – с двумя 16 параллельными линиями

Пусть на участке 123 (рис. 6. 7, а) отношение индуктивного сопротивления к активному больше аналогичного отношения на участке 143: (6. 42) Для создания однородной сети включим в линию 12 устройство продольной компенсации с сопротивлением Хс такой величины, чтобы (6. 43) Отсюда для настройки сети на однородную емкостное сопротивление должно быть равно (6. 44) 17

Целесообразность такого решения проверяется по критерию чистого дисконтированного дохода (6. 40), в котором учитываются годовые издержки и капитальные затраты на устройство продольной компенсации. 18