Вычислительная сложность алгоритма. Алгоритмическая сложность. Алгоритмы поиска. Алгоритмы сортировки. Алгоритмически неразрешимые проблемы

Постоянное время

Говорят, что алгоритм является алгоритмом постоянного времени (записывается как время O(1) ), если значение T (n ) ограничено значением, не зависящим от размера входа. Например, получение одного элемента в массиве занимает постоянное время, поскольку выполняется единственная команда для его обнаружения. Однако нахождение минимального значения в несортированном массиве не является операцией с постоянным временем, поскольку мы должны просмотреть каждый элемент массива. Таким образом, эта операция занимает линейное время, O(n). Если число элементов известно заранее и не меняется, о таком алгоритме можно говорить как об алгоритме постоянного времени.

Несмотря на название "постоянное время", время работы не обязательно должно быть независимым от размеров задачи, но верхняя граница времени работы не должна зависеть. Например, задача "обменять значения a и b , если необходимо, чтобы в результате получили a b ", считается задачей постоянного времени, хотя время работы алгоритма может зависеть от того, выполняется ли уже неравенство a b или нет. Однако существует некая константа t , для которой время выполнения задачи всегда не превосходит t .

Ниже приведены некоторые примеры кода, работающие за постоянное время:

Int index = 5; int item = list; if (условие верно) then else выполнить некоторые операции с постоянным временем работы for i = 1 to 100 for j = 1 to 200 выполнить некоторые операции с постоянным временем работы

Если T (n ) равен O(некоторое постоянное значение ), это эквивалентно T (n ) равно O(1).

Логарифмическое время

логарифмическое время , если T (n ) = O(log n ) . Поскольку в компьютерах принята двоичная система счисления , в качестве базы логарифма используется 2 (то есть, log 2 n ). Однако при замене базы логарифмы log a n и log b n отличаются лишь на постоянный множитель, который в записи O-большое отбрасывается. Таким образом, O(log n ) является стандартной записью для алгоритмов логарифмического времени независимо от базы логарифма.

Алгоритмы, работающие за логарифмическое время, обычно встречаются при операциях с двоичными деревьями или при использовании двоичного поиска .

O(log n) алгоритмы считаются высокоэффективными, поскольку время выполнения операции в пересчёте на один элемент уменьшается с увеличением числа элементов.

Очень простой пример такого алгоритма - деление строки пополам, вторая половина опять делится пополам, и так далее. Это занимает время O(log n) (где n - длина строки, мы здесь полагаем, что console.log и str.substring занимают постоянное время). Это означает, что для увеличения числа печатей необходимо удвоить длину строки.

// Функция для рекурсивной печати правой половины строки var right = function (str ) { var length = str . length ; // вспомогательная функция var help = function (index ) { // Рекурсия: печатаем правую половину if (index < length ) { // Печатаем символы от index до конца строки console . log (str . substring (index , length )); // рекурсивный вызов: вызываем вспомогательную функцию с правой частью help (Math . ceil ((length + index ) / 2 )); } } help (0 ); }

Полилогарифмическое время

Говорят, что алгоритм выполняется за полилогарифмическое время , если T (n ) = O((log n ) k ), для некоторого k . Например, задача о порядке перемножения матриц может быть решена за полилогарифмическое время на параллельной РАМ-машине .

Сублинейное время

Говорят, что алгоритм выполняется за сублинейное время , если T (n ) = o(n ). В частности, сюда включаются алгоритмы с временной сложностью, перечисленные выше, как и другие, например, поиск Гровера со сложностью O(n ½).

Типичные алгоритмы, которые, являясь точными, всё же работают за сублинейное время, используют распараллеливание процессов (как это делают алгоритм NC 1 вычисления определителя матрицы), неклассические вычисления (как в поиске Гровера) или имеют гарантированное предположение о струтуре входа (как работающие за логарифмическое время, алгоритмы двоичного поиска и многие алгоритмы обработки деревьев). Однако формальные конструкции , такие как множество всех строк, имеющие бит 1 в позиции, определяемой первыми log(n) битами строки, могут зависеть от каждого бита входа, но, всё же, оставаться сублинейными по времени.

Термин алгоритм с сублинейным временем работы обычно используется для алгоритмов, которые, в отличие от приведённых выше примеров, работают на обычных последовательных моделях машин и не предполагают априорных знаний о структуре входа . Однако для них допускается применение вероятностных методов и даже более того, алгоритмы должны быть вероятностными для большинства тривиальных задач.

Поскольку такой алгоритм обязан давать ответ без полного чтения входных данных, он в очень сильной степени зависит от способов доступа, разрешённых во входном потоке. Обычно для потока, представляющего собой битовую строку b 1 ,...,b k , предполагается, что алгоритм может за время O(1) запросить значение b i для любого i .

Алгоритмы сублинейного времени, как правило, вероятностны и дают лишь аппроксимированное решение. Алгоритмы сублинейного времени выполнения возникают естественным образом при исследовании проверки свойств .

Линейное время

линейное время , или O(n ) , если его сложность равна O(n ). Неформально, это означает, что для достаточно большого размера входных данных время работы увеличивается линейно от размера входа. Например, процедура, суммирующая все элементы списка, требует время, пропорциональное длине списка. Это описание не вполне точно, поскольку время работы может существенно отличаться от точной пропорциональности, особенно для малых значений n .

Линейное время часто рассматривается как желательный атрибут алгоритма . Было проведено много исследований для создания алгоритмов с (почти) линейным временем работы или лучшим. Эти исследования включали как программные, так и аппаратные подходы. В случае аппаратного исполнения некоторые алгоритмы, которые, с математической точки зрения, никогда не могут достичь линейного времени исполнения в стандартных моделях вычислений , могут работать за линейное время. Существуют некоторые аппаратные технологии, которые используют параллельность для достижения такой цели. Примером служит ассоциативная память . Эта концепция линейного времени используется в алгоритмах сравнения строк, таких как алгоритм Бойера - Мура и алгоритм Укконена .

Квазилинейное время

Говорят, что алгоритм работает за квазилинейное время, если T (n ) = O(n log k n ) для некоторой константы k . Линейно-логарифмическое время является частным случаем с k = 1 . При использовании обозначения слабое-O эти алгоритмы являются Õ(n ). Алгоритмы квазилинейного времени являются также o(n 1+ε) для любого ε > 0 и работают быстрее любого полинома от n

Алгоритмы, работающие за квазилинейное время, вдобавок к линейно-логарифмическим алгоритмам, упомянутым выше, включают:

  • Сортировка слиянием на месте , O(n log 2 n )
  • Быстрая сортировка , O(n log n ), в вероятностной версии имеет линейно-логарифмическое время выполнения в худшем случае. Невероятностная версия имеет линейно-логарифмическое время работы только для измерения сложности в среднем.
  • Пирамидальная сортировка , O(n log n ), сортировка слиянием , introsort , бинарная сортировка с помощью дерева, плавная сортировка , пасьянсная сортировка , и т.д. в худшем случае
  • Быстрые преобразования Фурье , O(n log n )
  • Вычисление матриц Монжа , O(n log n )

Линейно-логарифмическое время

Линейно-логарифмическое является частным случаем квазилинейного времени с показателем k = 1 на логарифмическом члене.

Линейно-логарифмическая функция - это функция вида n log n (т.е. произведение линейного и логарифмического членов). Говорят, что алгоритм работает за линейно-логарифмическое время , если T (n ) = O(n log n ) . Таким образом, линейно-логарифмический элемент растёт быстрее, чем линейный член, но медленнее, чем любой многочлен от n со степенью, строго большей 1.

Во многих случаях время работы n log n является просто результатом выполнения операции Θ(log n ) n раз. Например, сортировка с помощью двоичного дерева создаёт двоичное дерево путём вставки каждого элемента в массив размером n один за другим. Поскольку операция вставки в сбалансированное бинарное дерево поиска занимает время O(log n ), общее время выполнения алгоритма будет линейно-логарифмическим.

Сортировки сравнением требуют по меньшей мере линейно-логарифмического числа сравнений для наихудшего случая, поскольку log(n !) = Θ(n log n ) по формуле Стирлинга . То же время выполнения зачастую возникает из рекуррентного уравнения T (n ) = 2 T (n /2) + O(n ).

Подквадратичное время

Некоторые примеры алгоритмов полиномиального времени:

Строго и слабо полиномиальное время

В некоторых контекстах, особенно в оптимизации , различают алгоритмы со строгим полиномиальным временем и слабо полиномиальным временем . Эти две концепции относятся только ко входным данным, состоящим из целых чисел.

Строго полиномиальное время определяется в арифметической модели вычислений. В этой модели базовые арифметические операции (сложение, вычитание, умножение, деление и сравнение) берутся за единицы выполнения, независимо от длины операндов. Алгоритм работает в строго полиномиальное время, если

  1. число операций в арифметической модели вычислений ограничено многочленом от числа целых во входном потоке, и
  2. память, используемая алгоритмом, ограничена многочленом от размеров входа.

Любой алгоритм с этими двумя свойствами можно привести к алгоритму полиномиального времени путём замены арифметических операций на соответствующие алгоритмы выполнения арифметических операций на машине Тьюринга . Если второе из вышеприведённых требований не выполняется, это больше не будет верно. Если задано целое число (которое занимает память, пропорциональную n в машине Тьюринга), можно вычислить с помощью n операций, используя повторное возведение в степень . Однако память, используемая для представления 2 2 n {\displaystyle 2^{2^{n}}} , пропорциональна 2 n {\displaystyle 2^{n}} , и она скорее экспоненционально, чем полиномиально, зависит от памяти, используемой для входа. Отсюда - невозможно выполнить эти вычисления за полиномиальное время на машине Тьюринга, но можно выполнить за полиномиальное число арифметических операций.

Обратно - существуют алгоритмы, которые работают за число шагов машины Тьюринга, ограниченных полиномиальной длиной бинарно закодированного входа, но не работают за число арифметических операций, ограниченное многочленом от количества чисел на входе. Алгоритм Евклида для вычисления наибольшего общего делителя двух целых чисел является одним из примеров. Для двух целых чисел a {\displaystyle a} и b {\displaystyle b} время работы алгоритма ограничено O ((log ⁡ a + log ⁡ b) 2) {\displaystyle O((\log \ a+\log \ b)^{2})} шагам машины Тьюринга. Это число является многочленом от размера бинарного представления чисел a {\displaystyle a} и b {\displaystyle b} , что грубо можно представить как log ⁡ a + log ⁡ b {\displaystyle \log \ a+\log \ b} . В то же самое время число арифметических операций нельзя ограничить числом целых во входе (что в данном случае является константой - имеется только два числа во входе). Ввиду этого замечания алгоритм не работает в строго полиномиальное время. Реальное время работы алгоритма зависит от величин a {\displaystyle a} и b {\displaystyle b} , а не только от числа целых чисел во входе.

Если алгоритм работает за полиномиальное время, но не за строго полиномиальное время, говорят, что он работает за слабо полиномиальное время . Хорошо известным примером задачи, для которой известен слабо полиномиальный алгоритм, но не известен строго полиномиальный алгоритм, является линейное программирование . Слабо полиномиальное время не следует путать с псевдополиномиальным временем .

Классы сложности

Концепция полиномиального времени приводит к нескольким классам сложности в теории сложности вычислений. Некоторые важные классы, определяемые с помощью полиномиального времени, приведены ниже.

  • : Класс сложности задач разрешимости , которые могут быть решены в детерминированной машине Тьюринга за полиномиальное время.
  • : Класс сложности задач разрешимости, которые могут быть решены в недетерминированной машине Тьюринга за полиномиальное время.
  • ZPP : Класс сложности задач разрешимости, которые могут быть решены с нулевой ошибкой в вероятностной машине Тьюринга за полиномиальное время.
  • : Класс сложности задач разрешимости, которые могут быть решены с односторонними ошибками в вероятностной машине Тьюринга за полиномиальное время.
  • BPP вероятностной машине Тьюринга за полиномиальное время.
  • BQP : Класс сложности задач разрешимости, которые могут быть решены с двусторонними ошибками в квантовой машине Тьюринга за полиномиальное время.

P является наименьшим классом временной сложности на детерминированной машине, которая является устойчивой в терминах изменения модели машины. (Например, переход от одноленточной машины Тьюринга к мультиленточной может привести к квадратичному ускорению, но любой алгоритм, работающий за полиномиальное время на одной модели, будет работать за полиномиальное время на другой.)

Суперполиномиальное время

Говорят, что алгоритм работает за суперполиномиальное время , если T (n ) не ограничен сверху полиномом. Это время равно ω(n c ) для всех констант c , где n - входной параметр, обычно - число бит входа.

Например, алгоритм, осуществляющий 2 n шагов, для входа размера n требует суперполиномиального времени (конкретнее, экспоненциального времени).

Ясно, что алгоритм, использующий экспоненциальные ресурсы, суперполиномиален, но некоторые алгоритмы очень слабо суперполиномиальны. Например, тест простоты Адлемана - Померанса - Румели * работает за время n O(log log n ) на n -битном входе. Это растёт быстрее, чем любой полином, для достаточно большого n , но размер входа должен стать очень большим, чтобы он не доминировался полиномом малой степени.

Алгоритм, требующий суперполиномиального времени, лежит вне класса сложности . Тезис Кобэма утверждает, что эти алгоритмы непрактичны, и во многих случаях это так. Поскольку задача равенства классов P и NP не решена, никаких алгоритмов для решения NP-полных задач за полиномиальное время в настоящее время не известно.

Квазиполиномиальное время

Алгоритмы квазиполиномиального времени - это алгоритмы, работающие медленнее, чем за полиномиальное время, но не столь медленно, как алгоритмы экспоненциального времени. Время работы в худшем случае для квазиполиномиального алгоритма равно c . Хорошо известный классический алгоритм разложения целого числа на множители, , не является квазиполиномиальным, поскольку время работы нельзя представить как 2 O ((log ⁡ n) c) {\displaystyle 2^{O((\log n)^{c})}} для некоторого фиксированного c . Если константа "c" в определении алгоритма квазиполиномиального времени равна 1, мы получаем алгоритм полиномиального времени, а если она меньше 1, мы получаем алгоритм сублинейного времени.

Алгоритмы квазиполиномиального времени обычно возникают при сведении NP-трудной задачи к другой задаче. Например, можно взять NP-трудную задачу, скажем, 3SAT , и свести её к другой задаче B, но размер задачи станет равным 2 O ((log ⁡ n) c) {\displaystyle 2^{O((\log n)^{c})}} . В этом случае сведение не доказывает, что задача B NP-трудна, такое сведение лишь показывает, что не существует полиномиального алгоритма для B, если только не существует квазиполиномиального алгоритма для 3SAT (а тогда и для всех -задач). Подобным образом - существуют некоторые задачи, для которых мы знаем алгоритмы с квазиполиномиальным временем, но для которых алгоритмы с полиномиальным временем неизвестны. Такие задачи появляются в аппроксимационых алгоритмах. Знаменитый пример - ориентированная задача Штайнера , для которой существует аппроксимационный квазиполиномиальный алгоритм с аппроксимационным коэффициентом O (log 3 ⁡ n) {\displaystyle O(\log ^{3}n)} (где n - число вершин), но существование алгоритма с полиномиальным временем является открытой проблемой.

Класс сложности QP состоит из всех задач, имеющих алгоритмы квазиполиномиального времени. Его можно определить в терминах DTIME следующим образом

QP = ⋃ c ∈ N DTIME (2 (log ⁡ n) c) {\displaystyle {\mbox{QP}}=\bigcup _{c\in \mathbb {N} }{\mbox{DTIME}}(2^{(\log n)^{c}})}

Связь с NP-полными задачами

В теории сложности нерешённая проблема равенства классов P и NP спрашивает, не имеют ли все задачи из класса NP алгоритмы решения за полиномиальное время. Все хорошо известные алгоритмы для NP-полных задач, наподобие 3SAT, имеют экспоненциальное время. Более того, существует гипотеза, что для многих естественных NP-полных задач не существует алгоритмов с субэкспоненциальным временем выполнения. Здесь "субэкспоненциальное время " взято в смысле второго определения, приведённого ниже. (С другой стороны, многие задачи из теории графов, представленные естественным путём матрицами смежности, разрешимы за субэкспоненциальное время просто потому, что размер входа равен квадрату числа вершин.) Эта гипотеза (для задачи k-SAT) известна как гипотеза экспоненциального времени . Поскольку она предполагает, что NP-полные задачи не имеют алгоритмов квазиполиномиального времени, некоторые результаты неаппроксимируемости в области аппроксимационных алгоритмов исходят из того, что NP-полные задачи не имеют алгоритмов квазиполиномиального времени. Например, смотрите известные результаты по неаппроксимируемости задачи о покрытии множества .

Субэкспоненциальное время

Термин субэкспоненциальное время используется, чтобы выразить, что время выполнения некоторого алгоритма может расти быстрее любого полиномиального, но остаётся существенно меньше, чем экспоненциальное. В этом смысле задачи, имеющие алгоритмы субэкспоненциального времени, являются более податливыми, чем алгоритмы только с экспотенциальным временем. Точное определение "субэкспоненциальный" пока не является общепринятым , и мы приводим ниже два наиболее распространённых определения.

Первое определение

Говорят, что задача решается за субэкспоненциальное время, если она решается алгоритмом, логарифм времени работы которого растёт меньше, чем любой заданный многочлен. Более точно - задача имеет субэкспоненциальное время, если для любого ε > 0 существует алгоритм, который решает задачу за время O(2 n ε). Множество все таких задач составляет класс сложности SUBEXP , который в терминах DTIME можно выразить как .

SUBEXP = ⋂ ε > 0 DTIME (2 n ε) {\displaystyle {\text{SUBEXP}}=\bigcap _{\varepsilon >0}{\text{DTIME}}\left(2^{n^{\varepsilon }}\right)}

Заметим, что здесь ε не является частью входных данных и для каждого ε может существовать свой собственный алгоритм решения задачи.

Второе определение

Некоторые авторы определяют субэкспоненциальное время как время работы 2 o(n ) . Это определение допускает большее время работы, чем первое определение. Примером такого алгоритма субэкспоненциального времени служит хорошо известный классический алгоритм разложения целых чисел на множители, общий метод решета числового поля , который работает за время около 2 O ~ (n 1 / 3) {\displaystyle 2^{{\tilde {O}}(n^{1/3})}} , где длина входа равна n . Другим примером служит хорошо известный алгоритм для задачи изоморфизма графов , время работы которого равно 2 O ((n log ⁡ n)) {\displaystyle 2^{O({\sqrt {(}}n\log n))}} .

Заметим, что есть разница, является ли алгоритм субэкспоненциальным по числу вершин или числу рёбер. В параметризованной сложности эта разница присутствует явно путём указания пары , задачи разрешимости и параметра k . SUBEPT является классом всех параметризованных задач, которые работают за субэкспоненциальное время по k и за полиномиальное по n :

SUBEPT = DTIME (2 o (k) ⋅ poly (n)) . {\displaystyle {\text{SUBEPT}}={\text{DTIME}}\left(2^{o(k)}\cdot {\text{poly}}(n)\right).}

Точнее, SUBEPT является классом всех параметризованных задач (L , k) {\displaystyle (L,k)} , для которых существует вычислимая функция f: N → N {\displaystyle f:\mathbb {N} \to \mathbb {N} } с f ∈ o (k) {\displaystyle f\in o(k)} и алгоритм, который решает L за время 2 f (k) ⋅ poly (n) {\displaystyle 2^{f(k)}\cdot {\text{poly}}(n)} .

Определение сложности алгоритма

Получаемая в асимптотическом анализе оценка функции трудоемкости, называется сложностью алгоритма.

Следует иметь в виду, что существует несколько оценок сложности алгоритма.

Асимптотика функции трудоемкости - это операционная сложность. Кроме нее можно указать следующие виды сложностей.

Временная сложность - асимптотическая оценка времени работы алгоритма на входных данных длиною п. Очевидно, что при отсутствии распараллеливания вычислительных процедур время работы алгоритма однозначно определяется числом выполняемых операций. Постоянные коэффициенты, выражающие длительность выполнения операций, не влияют на порядок временной сложности, поэтому формулы операционной и временной сложностей часто совпадают друг с другом.

Емкостная сложность - асимптотическая оценка числа одновременно существующих скалярных величин при выполнении алгоритма на входных данных длиною п.

Структурная сложность - характеристика количества управляющих структур в алгоритме и специфики их взаиморасположения.

Когнитивная сложность - характеристика доступности алгоритма для понимания специалистами прикладных областей.

Виды и обозначения асимптотик

В асимптотическом анализе алгоритмов принято использовать обозначения математического асимптотического анализа. При этом рассматриваются три оценки (асимптотики) трудоемкости алгоритмов , которые обозначаются так:

  • 1) /(я) = О^(п)) - асимптотически точная оценка функции трудоемкости /(«), или операционная сложность алгоритма;
  • 2) /(п) = 0{§{п)) - асимптотически точная верхняя оценка функции трудоемкости /(п );
  • 3) /(л) = ?2(#(л)) - асимптотически точная нижняя оценка функции трудоемкости /(п).

Вместо обозначения С1^(п)) очень часто используется более простое о(^(«)) с буквой «о» строчное курсивное.

Поясним семантику формул на примере: если записано /(я) = 0(^2(л)), ТО ЭТО означает, ЧТО функция g(n)=og 2 (n) является асимптотически точной оценкой функции трудоемкости /(«). По сути дела имеет место двухпозиционное определение в форме утверждения:

Если f(n) = @(log 2 («)),

mo g(n) = log 2 (л) - асимптотически точная оценка f(n).

Заметим, что постоянный множитель не влияет на порядок сложности алгоритма, поэтому основание логарифма опускают при указании логарифмической трудоемкости, и пишут просто /(л) = @(1о§(л)), подразумевая у логарифма произвольное основание большее единицы.

Формальные определения асимптотик

Асимптотически точная оценка функции трудоемкости с, с 2 , л 0 , такие что при л>л 0 функция /(л) с точностью до постоянных множителей не отличается от функции g(л), то функция g(n) называется асимптотически точной оценкой функции /(л).

  • 3 с ] , с 2 е Ж, с х > 0, с 2 > 0:
    • (3 л 0 е К, л 0 > 0: (/л е К, л > л 0:0 g(n) /(л) = 0(?(л)),

где 9^, N - множества всех вещественных и натуральных чисел соответственно.

Асимптотически точная верхняя оценка функции трудоемкости вербально определяется так: если существуют положительные числа с и л 0 , такие что при л>л 0 функция /(л) растет не быстрее, чем функция g(n) с точностью до постоянного множителя с, то функция g{n) называется асимптотически точной верхней оценкой функции Ап).

Более точная формальная запись определения имеет вид:

  • 3 с е % с > 0:
    • (3 л 0 е X, л 0 > 0: (/л е К, л > л 0:0 с? #(л))) 0(g(n))

Асимптотически точная нижняя оценка функции трудоемкости вербально определяется так: если существуют положительные числа с и л 0 , такие что при л>л 0 функция /(л) растет не медленнее, чем функция g{n) с точностью до постоянного множителя с, то функция?(л) называется асимптотически точной нижней оценкой функции

Более точная формальная запись определения имеет вид:

  • 3 с е 9^, с > 0:
    • (3 я 0 е X, я 0 > 0: (/я е К, я > я 0: 0 с? g(n)

/(я) = 0.^(п))

Заметим, следующее:

  • 1) неравенствам, указанным в формальных определениях асимптотик, в общем случае может удовлетворять не одна, а некоторое множество функций, часто с бесчисленным множеством членов, поэтому конструкции Q(g(n )), 0^{п)) и 0.^(п)) символизируют множества функций , с которыми сопоставляется исследуемая функция трудоемкости /(я); в силу этого в обозначениях асимптотик вида /(я) = 0(?(я)), /(/0 = О(? тах (л)), Дя) = ?2(? т1п (я)) вместо знака «=» рациональнее было бы использовать знак «е»;
  • 2) конструкции (д^{п )), 0^{п)) и ?1^{п)), использованные в качестве обозначений некоторых величин, следует читать соответственно так: любая функция, совпадающая, растущая не быстрее и растущая не медленнее g{n).

Совпадение и различие асимптотик

Обратим внимание на следующий факт: оценка /(я) = 0(?(я)) устанавливает для /(я) одновременно и верхнюю, и нижнюю оценки, поскольку ее определение предполагает справедливость отношения с г g(n)

Достаточно очевидно следующее свойство асимптотик: если оценка ф(п) = ©^(п)) существует, то справедливы равенства /(п ) = 0(^(я)) и /(я) = ?2(#(я)), т.е. верхние и нижние оценки трудоемкости совпадают друг с другом; если же /(я) = 0(? тах (я)) и ф(п) = С1^ тт (п )), и g max (n)фg m 1п (я), то не существует функции g(n), такой что /(я) = 0(?(я)).

Совпадение верхней и нижней оценок трудоемкости возможно в следующих случаях:

  • 1) функция трудоемкости при всех значениях длины входа является детерминированной (неслучайной) функцией, т.е. количество выполняемых операций не зависит от конкретики значений исходных данных; таковыми, например, являются функции зависимостей количества операций умножения и деления от числа неизвестных величин в алгоритме решения систем линейных алгебраических уравнений методом ИЗ-разложения;
  • 2) функция трудоемкости является случайной функцией, т.е. количество выполняемых операций зависит от конкретики исходных данных и (или) порядка их поступления, и можно указать функции / т|п (я), / тах (я), описывающие минимальное и максимальное количество операций, выполняемых исполнителем алгоритма при конкретной длине входа я, однако обе эти функции имеют одинаковые доминанты, - например, являются полиномами одного и того же порядка.

Следует помнить о существовании следующих трех важных правил, связанных с оценками порядка операционной сложности:

  • 1) постоянные множители не имеют значения для определения порядка сложности, т.е. 0(к? g(n )) = 0(g(«)) ;
  • 2) порядок сложности произведения двух функций равен произведению их сложностей, поскольку справедливо равенство:
  • 0(gl (я) §2 (я)) = 0 (?| (я)) 0 (#2(я)) ;
  • 3) порядок сложности суммы функций равен порядку доминанты слагаемых, например: 0(я э +п 2 +п) = 0(я 5).

В приведенных правилах использован символ только одной асимптотики 0(»), но они справедливы для всех асимптотических оценок - и для 0( ) , и &.{ ).

Во множестве элементарных функций можно указать список функционального доминирования: если -переменная, a,b - числовые константы, то справедливы следующие утверждения: я" доминирует я!; я! доминирует а"; а" доминирует Zj", если а>Ь а п доминирует п ь, если а > 1 при любом b е 9? ; п а доминирует а/, если а>Ь я доминирует log д (я), если а > 1.

Оценивание средней трудоемкости

В практике реальных вычислений существенный интерес представляет оценка /(я) математического ожидания трудоемкости М, поскольку в подавляющем большинстве случаев /(я) является случайной функцией. Однако в процессе экспериментальных исследований алгоритмов со случайной /(я) возникает дополнительная проблема - выбора количества испытаний для надежной оценки М. Преодоление этой проблемы является центральной задачей в . Предлагаемое в решение основано на использовании бета-распределения для аппроксимации /(я). Это весьма конструктивная и универсальная методика. Однако в современных условиях, когда производительность ЭВМ достаточно высока, во многих случаях можно использовать более простой способ выбора объема испытаний, основанный на контроле текущей вариативности значений f(n) - значения оцениваются до тех пор, пока вариативность оценок не станет меньше заданной погрешности.

Оценивание операционной сложности алгоритма

Сложность алгоритма может быть определена исходя из анализа его управляющих структур. Алгоритмы без циклов и рекурсивных вызовов имеют константную сложность. Поэтому определение сложности алгоритма сводится в основном к анализу циклов и рекурсивных вызовов.

Рассмотрим алгоритм удаления к -го элемента из массива размером п , состоящий из перемещения элементов массива от (к + 1) -го до п -го на одну позицию назад к началу массива и уменьшения числа элементов п на единицу. Сложность цикла обработки массива составляет О(п-к), так как тело цикла (операция перемещения) выполняется п-к раз, а сложность тела цикла равна 0(1), т.е. является константой.

В рассматриваемом примере сложность охарактеризована асимптотикой 0(»), поскольку количество выполняемых операций в этом алгоритме не зависит от конкретики значений данных. Функция трудоемкости является детерминированной, и все виды асимптотик совпадают друг с другом: f(n) = Q(n-k), f(n) = 0(n-k) и f(n) = Q(n- к ). Об этом факте и свидетельствует указание именно ©( ). Использовать 0(*) и/или?2(*) следует только в том случае, если эти асимптотики различаются.

Тип цикла (for, while, repeat) не влияет на сложность. Если один цикл вложен в другой и оба цикла зависят от размера одной и той же переменной, то вся конструкция характеризуется квадратичной сложностью. Вложенность повторений является основным фактором роста сложности. В качестве примера приведем сложности хорошо известных алгоритмов поиска и сортировки для массива размером п:

  • число операций сравнения в последовательном поиске: 0(я);
  • число операций сравнения в бинарном поиске: 0(log 2 п );
  • число операций сравнения в методе простого обмена (пузырьковая сортировка): 0(я 2);
  • число операций перестановки в пузырьковой сортировке: 0{п 2);

Заметим, что число операций сравнения в методе простого обмена имеют асимптотику 0(п 2), а число операций перестановки имеет две различных асимптотики 0(п 2) и?2(0), потому что количество сравнений не зависит от конкретики значений сортируемых данных, в то время как количество перестановок определяется именно этой конкретикой. Перестановки могут не осуществляться вовсе, - если массив данных правильно упорядочен изначально, либо количество перестановок может быть максимальным - порядка п 2 , - если сортируемый массив исходно упорядочен в противном направлении.

Название функции g(n) в асимптотиках /(л) = @(^(л)) и /(«) = 0(g(n)) функции трудоемкости /(«) используется для характеристики алгоритма. Таким образом, говорят об алгоритмах полиномиальной, экспоненциальной, логарифмической и т. д. сложности.

O(1) - Большинство операций в программе выполняются только раз или только несколько раз. Алгоритмами константной сложности. Любой алгоритм, всегда требующий независимо от размера данных одного и того же времени, имеет константную сложность.

О(N) - Время работы программы линейно обычно когда каждый элемент входных данных требуется обработать лишь линейное число раз.

О(N 2), О(N 3), О(N а) - Полиномиальная сложность.

О(N 2)-квадратичная сложность, О(N 3)- кубическая сложность

О(Log(N)) - Когда время работы программы логарифмическое , программа начинает работать намного медленнее с увеличением N. Такое время работы встречается обычно в программах, которые делят большую проблему в маленькие и решают их по отдельности.

O(N*log(N)) - Такое время работы имеют те алгоритмы, которые делят большую проблему в маленькие , а затем, решив их, соединяют их решения.

O(2 N) = Экспоненциальная сложность. Такие алгоритмы чаще всего возникают в результате подхода именуемого метод грубой силы.

Программист должен уметь проводить анализ алгоритмов и определять их сложность. Временная сложность алгоритма может быть посчитана исходя из анализа его управляющих структур.

Алгоритмы без циклов и рекурсивных вызовов имеют константную сложность. Если нет рекурсии и циклов, все управляющие структуры могут быть сведены к структурам константной сложности. Следовательно, и весь алгоритм также характеризуется константной сложностью.

Определение сложности алгоритма в основном сводится к анализу циклов и рекурсивных вызовов.

Например, рассмотрим алгоритм обработки элементов массива.
For i:=1 to N do
Begin
...
End;

Сложность этого алгоритма O(N), т.к. тело цикла выполняется N раз, и сложность тела цикла равна O(1).

Если один цикл вложен в другой и оба цикла зависят от размера одной и той же переменной, то вся конструкция характеризуется квадратичной сложностью.
For i:=1 to N do
For j:=1 to N do
Begin
...
End;
Сложность этой программы О(N 2).

Существуют два способа анализа сложности алгоритма: восходящий (от внутренних управляющих структур к внешним) и нисходящий (от внешних и внутренним).


O(H)=O(1)+O(1)+O(1)=O(1);
O(I)=O(N)*(O(F)+O(J))=O(N)*O(доминанты условия)=О(N);
O(G)=O(N)*(O(C)+O(I)+O(K))=O(N)*(O(1)+O(N)+O(1))=O(N 2);
O(E)=O(N)*(O(B)+O(G)+O(L))=O(N)* O(N 2)= O(N 3);
O(D)=O(A)+O(E)=O(1)+ O(N 3)= O(N 3)

Сложность данного алгоритма O(N 3).

Как правило, около 90% времени работы программы требует выполнение повторений и только 10% составляют непосредственно вычисления. Анализ сложности программ показывает, на какие фрагменты выпадают эти 90% -это циклы наибольшей глубины вложенности. Повторения могут быть организованы в виде вложенных циклов или вложенной рекурсии.

Эта информация может использоваться программистом для построения более эффективной программы следующим образом. Прежде всего можно попытаться сократить глубину вложенности повторений. Затем следует рассмотреть возможность сокращения количества операторов в циклах с наибольшей глубиной вложенности. Если 90% времени выполнения составляет выполнение внутренних циклов, то 30%-ное сокращение этих небольших секций приводит к 90%*30%=27%-му снижению времени выполнения всей программы.

Это наиболее простой пример.

Анализом эффективности алгоритмов занимается отдельный раздел математики и найти наиболее оптимальную функцию бывает не так - то и просто.

Давайте оценим алгоритм бинарного поиска в массиве - дихотомию .

Суть алгоритма: идем к середине массива и ищем соответствие ключа значению срединного элемента. Если нам не удается найти соответствия, мы смотрим на относительный размер ключа и значение срединного элемента и затем перемещаемся в нижнюю или верхнюю половину списка. В этой половине снова ищем середину и опять сравниваем с ключом. Если не получается, снова делим на половину текущий интервал.

function search(low, high, key: integer): integer;
var
mid, data: integer;
begin
while low<=high do
begin
mid:=(low+high) div 2;
data:=a;
if key=data then
search:=mid
else
if key < data then
high:=mid-1
else
low:=mid+1;
end;
search:=-1;
end;

Первая итерация цикла имеет дело со всем списком. Каждая последующая итерация делит пополам размер подсписка. Так, размерами списка для алгоритма являются

n n/2 1 n/2 2 n/2 3 n/2 4 ... n/2 m

В конце концов будет такое целое m, что

n/2 m <2 или n<2 m+1

Так как m - это первое целое, для которого n/2 m <2, то должно быть верно

n/2 m-1 >=2 или 2 m =

Из этого следует, что
2 m = Возьмем логарифм каждой части неравенства и получим
m= Значение m - это наибольшее целое, которое =<х.
Итак, O(log 2 n).

Обычно решаемая задача имеет естественный "размер" (обычно количество данных ею обрабатываемых) которое мы называем N. В конечном итоге нам бы хотелось получить выражение для времени, необходимого программе для обработки данных размера N, как функцию от N. Обычно на интересует средний случай - ожидаемое время работы программы на "типичных" входных данных, и худший случай - ожидаемое время работы программы на самых плохих входных данных.

Некоторые алгоритмы хорошо изучены в том смысле, что известны точные математические формулы для среднего и худшего случаев. Такие формулы разрабатываются посредством тщательного изучения программ с целью нахождения времени работы в терминах математических характеристик, и затем производя их математический анализ.

Несколько важных причин такого рода анализа:
1. Программы, написанные на языке высокого уровня, транслируются в машинные коды, и понять сколько времени потребуется для выполнения того или иного оператора может быть трудно.
2. Многие программы очень чувствительны к входным данным, и их эффективность может очень сильно от них зависеть. Средний случай может оказаться математической фикцией не связанной с теми данными на которых программа используется, а худший случай маловероятен.

Лучший, средний и худший случаи очень большое влияние играют в сортировке.
Объем вычислений при сортировке


O-анализ сложности получил широкое распространение во многих практических приложениях. Тем не менее необходимо четко понимать его ограниченность.

К основным недостаткам подхода можно отнести следующие:
1) для сложных алгоритмов получение O-оценок, как правило, либо очень трудоемко, либо практически невозможно,
2) часто трудно определить сложность "в среднем",
3) O-оценки слишком грубые для отображения более тонких отличий алгоритмов,
4) O-анализ дает слишком мало информации (или вовсе ее не дает) для анализа поведения алгоритмов при обработке небольших объемов данных.

Определение сложности в O-обозначениях - далеко нетривиальная задача. В частности, эффективность двоичного поиска определяется не глубиной вложенности циклов, а способом выбора каждой очередной попытки.

Еще одна сложность - определение "среднего случая". Обычно сделать это достаточно трудно из-за невозможности предсказания условий работы алгоритма. Иногда алгоритм используется как фрагмент большой, сложной программы. Иногда эффективность работы аппаратуры и/или операционной системы, или некоторой компоненты компилятора существенно влияет на сложность алгоритма. Часто один и тот же алгоритм может использоваться в множестве различных приложений.

Из-за трудностей, связанных с проведением анализа временной сложности алгоритма "в среднем", часто приходится довольствоваться оценками для худшего и лучшего случаев. Эти оценки по сути определяют нижнюю и верхнюю границы сложности "в среднем". Собственно, если не удается провести анализ сложности алгоритма "в среднем", остается следовать одному из законов Мерфи, согласно которому оценка, полученная для наихудшего случая, может служить хорошей аппроксимацией сложности "в среднем".

Возможно, основным недостатком O-функций является их черезмерная грубость. Если алгоритм А выполняет некоторую задачу за 0.001*N с, в то время как для ее же решения с помощью алгоритма В требуется 1000*N с, то В в миллион раз быстрее, чем А. Тем не менее А и В имеют одну и ту же временную сложность O(N).

Большая часть данной лекции была посвящена анализу временной сложности алгоритмов. Существуют еще и другие формы сложности, о которых не следует забывать: пространственная и интеллектуальная сложность.

О пространственной сложности как объеме памяти, необходимой для выполнения программы, уже упоминалось ранее.

При анализе интеллектуальной сложности алгоритма исследуется понятность алгоритмов и сложность их разработки.

Все три формы сложности обычно взаимосвязаны. Как правило, при разработке алгоритма с хорошей временной оценкой сложности приходится жертвовать его пространственной и/или интеллектуальной сложностью. Например, алгоритм быстрой сортировки существенно быстрее, чем алгоритм сортировки выборками. Плата за увеличение скорости сортировки выражена в большем объеме необходимой для сортировки памяти. Необходимость дополнительной памяти для быстрой сортировки связана с многократными рекурсивными вызовами.

Алгоритм быстрой сортировки характеризуется также и большей интеллектуальной сложностью по сравнению с алгоритмом сортировки вставками. Если предложить сотне людей отсортировать последовательность объектов, то вероятнее всего, большинство из них используют алгоритм сортировки выборками. Маловероятно также, что кто-то из них воспользуется быстрой сортировкой. Причины большей интеллектуальной и пространственной сложности быстрой сортировки очевидны: алгоритм рекурсивный, его достаточно трудно описать, алгоритм длиннее (имеется в виду текст программы), чем более простые алгоритмы сортировки.

Для любого программиста важно знать основы теории алгоритмов, так как именно эта наука изучает общие характеристики алгоритмов и формальные модели их представления. Ещё с уроков информатики нас учат составлять блок-схемы, что, в последствии, помогает при написании более сложных задач, чем в школе. Также не секрет, что практически всегда существует несколько способов решения той или иной задачи: одни предполагают затратить много времени, другие ресурсов, а третьи помогают лишь приближённо найти решение.

Всегда следует искать оптимум в соответствии с поставленной задачей, в частности, при разработке алгоритмов решения класса задач.
Важно также оценивать, как будет вести себя алгоритм при начальных значениях разного объёма и количества, какие ресурсы ему потребуются и сколько времени уйдёт на вывод конечного результата.
Этим занимается раздел теории алгоритмов – теория асимптотического анализа алгоритмов.

Предлагаю в этой статье описать основные критерии оценки и привести пример оценки простейшего алгоритма. На Хабрахабре уже есть про методы оценки алгоритмов, но она ориентирована, в основном, на учащихся лицеев. Данную публикацию можно считать углублением той статьи.

Определения

Основным показателем сложности алгоритма является время, необходимое для решения задачи и объём требуемой памяти.
Также при анализе сложности для класса задач определяется некоторое число, характеризующее некоторый объём данных – размер входа .
Итак, можем сделать вывод, что сложность алгоритма – функция размера входа.
Сложность алгоритма может быть различной при одном и том же размере входа, но различных входных данных.

Существуют понятия сложности в худшем , среднем или лучшем случае . Обычно, оценивают сложность в худшем случае.

Временная сложность в худшем случае – функция размера входа, равная максимальному количеству операций, выполненных в ходе работы алгоритма при решении задачи данного размера.
Ёмкостная сложность в худшем случае – функция размера входа, равная максимальному количеству ячеек памяти, к которым было обращение при решении задач данного размера.

Порядок роста сложности алгоритмов

Порядок роста сложности (или аксиоматическая сложность) описывает приблизительное поведение функции сложности алгоритма при большом размере входа. Из этого следует, что при оценке временной сложности нет необходимости рассматривать элементарные операции, достаточно рассматривать шаги алгоритма.

Шаг алгоритма – совокупность последовательно-расположенных элементарных операций, время выполнения которых не зависит от размера входа, то есть ограничена сверху некоторой константой.

Виды асимптотических оценок

O – оценка для худшего случая

Рассмотрим сложность f(n) > 0 , функцию того же порядка g(n) > 0 , размер входа n > 0 .
Если f(n) = O(g(n)) и существуют константы c > 0 , n 0 > 0 , то
0 < f(n) < c*g(n),
для n > n 0 .

Функция g(n) в данном случае асимптотически-точная оценка f(n). Если f(n) – функция сложности алгоритма, то порядок сложности определяется как f(n) – O(g(n)).

Данное выражение определяет класс функций, которые растут не быстрее, чем g(n) с точностью до константного множителя.

Примеры асимптотических функций
f(n) g(n)
2n 2 + 7n - 3 n 2
98n*ln(n) n*ln(n)
5n + 2 n
8 1
Ω – оценка для лучшего случая

Определение схоже с определением оценки для худшего случая, однако
f(n) = Ω(g(n)) , если
0 < c*g(n) < f(n)


Ω(g(n)) определяет класс функций, которые растут не медленнее, чем функция g(n) с точностью до константного множителя.

Θ – оценка для среднего случая

Стоит лишь упомянуть, что в данном случае функция f(n) при n > n 0 всюду находится между c 1 *g(n) и c 2 *g(n) , где c – константный множитель.
Например, при f(n) = n 2 + n ; g(n) = n 2 .

Критерии оценки сложности алгоритмов

Равномерный весовой критерий (РВК) предполагает, что каждый шаг алгоритма выполняется за одну единицу времени, а ячейка памяти за одну единицу объёма (с точностью до константы).
Логарифмический весовой критерий (ЛВК) учитывает размер операнда, который обрабатывается той или иной операцией и значения, хранимого в ячейке памяти.

Временная сложность при ЛВК определяется значением l(O p) , где O p – величина операнда.
Ёмкостная сложность при ЛВК определяется значением l(M) , где M – величина ячейки памяти.

Пример оценки сложности при вычислении факториала

Необходимо проанализировать сложность алгоритма вычисление факториала. Для этого напишем на псевдокоде языка С данную задачу:

Void main() { int result = 1; int i; const n = ...; for (i = 2; i <= n; i++) result = result * n; }

Временная сложность при равномерном весовом критерии

Достаточно просто определить, что размер входа данной задачи – n .
Количество шагов – (n - 1) .

Таким образом, временная сложность при РВК равна O(n) .

Временная сложность при логарифмическом весовом критерии

В данном пункте следует выделить операции, которые необходимо оценить. Во-первых, это операции сравнения. Во-вторых, операции изменения переменных (сложение, умножение). Операции присваивания не учитываются, так как предполагается, что она происходят мгновенно.

Итак, в данной задаче выделяется три операции:

1) i <= n

На i-м шаге получится log(n) .
Так как шагов (n-1) , сложность данной операции составит (n-1)*log(n) .

2) i = i + 1

На i-м шаге получится log(i) .
.

3) result = result * i

На i-м шаге получится log((i-1)!) .
Таким образом, получается сумма .

Если сложить все получившиеся значения и отбросить слагаемые, которые заведомо растут медленнее с увеличением n , получим конечное выражение .

Ёмкостная сложность при равномерном весовом критерии

Здесь всё просто. Необходимо подсчитать количество переменных. Если в задаче используются массивы, за переменную считается каждая ячейка массива.
Так как количество переменных не зависит от размера входа, сложность будет равна O(1) .

Ёмкостная сложность при логарифмическом весовом критерии

В данном случае следует учитывать максимальное значение, которое может находиться в ячейке памяти. Если значение не определено (например, при операнде i > 10), то считается, что существует какое-то предельное значение V max .
В данной задаче существует переменная, значение которой не превосходит n (i) , и переменная, значение которой не превышает n! (result) . Таким образом, оценка равна O(log(n!)) .

Выводы

Изучение сложности алгоритмов довольно увлекательная задача. На данный момент анализ простейших алгоритмов входит в учебные планы технических специальностей (если быть точным, обобщённого направления «Информатика и вычислительная техника»), занимающихся информатикой и прикладной математикой в сфере IT.
На основе сложности выделяются разные классы задач: P , NP , NPC . Но это уже не проблема теории асимптотического анализа алгоритмов.

Для оценки эффективности алгоритма наиболее важными показателями являются:

Время выполнения алгоритма,
- требуемый объем оперативной памяти.

В наши дни, в силу полувека технического прогресса, первый показатель (время выполнения) зачастую значительно важнее, чем второй, поэтому далее подробно остановимся только на нем.

Упрощения для оценки времени выполнения алгоритмов


В работах Д.Кнута был предложен следующий подход для анализа времени выполнения алгоритмов: общее время складывается из величин стоимость * частота для каждой базовой операции. В число базовых операций могут входить сложение, умножение, деление, получение элемента по индексу из массива, сравнение целых чисел и т.д. Нетрудно заметить, что в этом случае вычисление оценки времени выполнения алгоритма довольно-таки утомительно. Поэтому А.Тьюринг сказал, что удобно пользоваться даже грубыми приближениями оценок времени выполнения алгоритмов: можно присвоить веса различным операциям в зависимости от их частоты появления во время работы алгоритма и учитывать только те операции, которым соответствуют наибольшие веса. Например, при перемножении матриц следует учитывать только такие операции, как умножение и запись чисел, т.к. это самые частые операции. Рассмотрение только наиболее часто встречающихся операций - первое упрощение , предложенное для приблизительного расчета времени выполнения алгоритмов.

Второе упрощение заключается в отбрасывании термов (т.е. слагаемых) более низкого порядка, которые привносят небольшой вклад в итоговую оценку времени выполнения алгоритма. Например (далее число N характеризует размер входных данных),

\(1/6 N^3 + 20N + 16 \sim 1/6N^3\),

вместо \(1/6N^3\) пишут "этот алгоритм имеет сложность \(O(N^3)\), вместо \(3N^4\) пишут "этот алгоритм имеет сложность \(O(N^4)\)".

Определение O-большого

Говорят, что \(f\) является "O большим" от \(g\) при \(x \to x_0\), если существует такая константа \(C>0\), что для всех \(x\) из окрестности точки \(x_0\) имеет место неравенство \(|f(x)| \leq C|g(x)|\). Ниже приведена иллюстрация определения (ось \(x\) - размер входных данных, ось \(y\) - время выполнения алгоритма). Мы видим, что начиная с некоторой точки при стремлении размера входных данных к \(\propto\) \(f(n)\) растет медленнее, чем \(g(n)\) и вообще \(g(n)\) как бы ограничивает ее сверху.

Примеры. \(1 = O(N), N = O(N^2).\)

Наряду с оценками вида \(O(N)\) используется оценка \(\Omega(N)\) (омега большое). Она обозначает нижнюю оценку роста функции. Например, пусть количество операций алгоритма описывает функция \(f(N)=\Omega(N^2)\). Это значит, что даже в самом удачном случае будет произведено не менее \(N^2\) действий. В то время как оценка \(O(N^3)\) гарантирует, что в худшем случае будет не более чем порядка \(N^3\) действий. Также используется оценка \(\Theta(N)\) (тэта), которая является верхней и нижней асимптотической оценкой, когда \(O(N)\) и \(\Omega(N)\) совпадают. Итак, \(O(N)\) - приближенная оценка алгоритма на худших входных данных, \(\Omega(N)\) - на лучших входных данных, \(\Theta(N)\) - сокращенная запись одинаковых \(O(N)\) и \(\Omega(N)\).

Оценки времени выполнения для разных алгоритмов

Обозначим T(N) - время выполнения алгоритма. Пусть исследуемый алгоритм имеет вид:

1. набор инструкций, включающих только базовые операции:

Statement 1;
...
statement k;

Тогда T(N) = T(statement 1) + ... + T(statement k).

Т.к. каждая инструкция включает только базовые операции, то время выполнения этого куска кода не зависит от размера входных данных (не растет с ростом размера входных данных), т.е. является константой. Этот алгоритм имеет сложность O(1).

2. if-else инструкции

If (condition) {
sequence of statements 1
}
else {
sequence of statements 2
}

Здесь выполнится либо sequence of statements 1, либо sequence of statements 2, поэтому, т.к. мы хотим получить оценку времени выполнения в наихудшем случае, T(N) = max(T(sequence of statements 1), T(sequence of statements 2)). Например, если время выполнения sequence of statements 1 будет O(N), а sequence of statements - O(1), то T(N) = O(N).

For (i = 0; i < N; i++) {
sequence of statements
}

Т.к. цикл выполнится N раз, то sequence of statements тоже выполнится N раз. Если T(sequence of statements) = O(1), то T(N) = O(N)*O(1) = O(N).

4. Вложенные циклы.

For (i = 0; i < N; i++) {
for (j = 0; j < M; j ++){
...
}
}

Внешний цикл выполняется N раз. Каждый раз, когда выполняется внешний цикл, выполняется внутренний цикл M

Теперь рассмотрим такой код:

For (i = 0; i < N; i++) {
for (j = i + 1; j < N; j ++){
sequence of statements
}
}

Посмотрим на изменение количества итераций внутреннего цикла в зависимости от итерации внешнего цикла.

I цикл j (кол-во раз выполнения)
0 N
1 N-1
2 N-2
...
N-1 1

Тогда sequence of statements выполнится N + N-1 + ... + 1 раз. Для быстрого подсчета подобных сумм пригодятся формулы из матанализа, в данном случае формула


Т.е. этот алгоритм будет иметь сложность \(O(N^2)\).

А вот и другие наиболее часто нужные формулы, полезные для подобных случаев:

4. Когда утверждение включает вызов метода, то оценка времени выполнения утверждения рассчитывается с учетом оценки времени выполнения метода. Например:

for (j = 0; j < N; j ++){


Если время выполнения метода \(g(N)=O(N)\), то \(T(N) = O(N)*O(N) = O(N^2)\).

5. Двоичный(бинарный) поиск.

Int l = 0;
int u = A.length - 1
int m;
while (l <= u) {
m = l + (u - 1)/2
if A[m] < k {
l = m +1;
}
else if A[m] == k {
return m;
}
else{
u = m - 1;
}
}
return -1;

Двоичный поиск позволяет найти индекс числа k в отсортированном массиве, если этого числа в нем нет, то возвращается -1. Сначала мы сравниваем k с числом, находящимся в середине массива. Если k меньше этого числа, то дальше мы должны искать его в левой половине массива, если больше - то в правой половине. Далее k сравнивается с числом, находящимся в середине выбранной на предыдущем шаге половины массива и т.д. С каждой итерацией пространство поиска сужается вдвое. Возникает вопрос: сколько итераций необходимо будет проделать в наихудшем случае (т.е. когда в массиве так и не будет найдено число, равное k и не останется данных для сравнения).

Мы видим, что после 1 итерации останется \(N/2\) данных для поиска индекса \(k\), после 2 итерации останется \(N/4\) данных, после 3 итерации - \(N/8\) и т.д. Мы узнаем количество итераций в наихудшем случае, если решим уравнение \(\frac{N}{2^x}=1\). Это уравнение равносильно уравнению \(2^x=N\), отсюда \(x=log_{2}(N)\) или \(x=lg(N)\) (см. определение логарифма). Поэтому оценка сложности алгоритма бинарного поиска - \(O(logN)\).

Хорошая новость заключается в том, что для характеризации времени выполнения большинства алгоритмов достаточно всего нескольких функций: \(1, logN, N, NlogN, N^2, N^3, 2^N\). На графике проиллюстрированы различные скорости роста времени выполнения алгоритма в зависимости от размера входных данных:

Из этого графика, в частности, видно, что если время выполнения алгоритма "логарифмическое", т.е. алгоритм имеет сложность \(O(logN)\), то это очень круто, т.к. время его выполнения очень медленно растет с увеличением размера входных данных, если время выполнения линейно зависит от размера входных данных, то это тоже неплохо, а вот алгоритмы с экспоненциальным временем работы (\(O(2^N)\)) лучше не использовать совсем или использовать только на данных очень малого размера.

классы P и NP

Вещественная неотрицательная функция \(f(m)\), определенная для целых положительных значений аргумента, называется полиномиально ограниченной, если существует полином \(P(m)\) с вещественными коэффициентами такой, что \(f(m) \leq P(m)\) для всех \(m \in N^+\). Задачи, для которых существуют алгоритмы с "полиномиальным" временем работы принадлежат классу P (эти задачи в основном решаются быстро и без каких-либо проблем).

Формальное определение. Язык L принадлежит классу P, тогда и только тогда, когда существует детерминированная машина Тьюринга M, такая, что:

При любых входных данных M заканчивает свою работу за полиномиальное время,
- для всех \(x \in L\) M выдает результат 1,
- для всех \(x\), не принадлежащих \(L\), M выдает результат 0.

Задачи класса NP - задачи, удовлетворяющие условию: если имеется ответ (возможное решение), то его легко верифицировать - проверить, является оно решением или нет.

Рассмотрим пример задачи из класса NP. Пусть дано множество целых чисел, например, {-7,-3, -2, 5, 8}. Требуется узнать, есть ли среди этих чисел 3 числа, которые в сумме дают 0. В данном случае ответ "да" (например, такой тройкой являются числа {-3,-2,5}. При возрастании размера множеств целых чисел количество подмножеств, состоящих из 3 элементов, экспоненциально возрастает. Между тем, если нам дают одно такое подмножество (его еще называют сертификатом), то мы легко можем проверить, равна ли 0 сумма его элементов.

Формальное определение:

Язык L принадлежит классу NP, тогда и только тогда, когда существуют такие полиномы \(p\) и \(q\) и детерминированная машина Тьюринга M, такие, что:

Для любых \(x,y\) машина M на входных данных \((x,y)\) выполняется за время \(p(|x|)\),
- для любого \(x \in L\) существует строка \(y\) длины \(q(|x|)\), такая что \(M(x,y)=1\),
- для любого \(x\) не из \(L\) и всех строк длины \(q(|x|)\) \(M(x,y)=0\).

Полиномиальная сводимость или сводимость по Карпу. Функция \(f_1\) сводится к функции \(f_2\), если существует функция \(f \in P\), такая, что для любого \(x\) \(f_{1}(x)=f_{2}(f(x))\).


Задача T называется NP-полной , если она принадлежит классу NP и любая другая задача из NP сводится к ней за полиномиальное время. Пожалуй, наиболее известным примером NP-полной задачи является задача SAT(от слова satisfiability). Пусть дана формула, содержащая булевы переменные, операторы "И", "ИЛИ", "НЕ" и скобки. Задача заключается в следующем: можно ли назначить всем переменным, встречающимся в формуле, значения ложь и истина так, чтобы формула приняла значение "истина ".

Задача T называется NP-трудной , если для нее существует такая NP-полная задача, которая сводится к T за полиномиальное время. Здесь имеется в виду сводимость по Куку. Сведение задачи \(R_1\) к \(R_2\) по Куку - это полиномиальный по времени алгоритм, решающий задачу \(R_1\) при условии, что функция, находящая решение задачи \(R_2\), ему дана в качестве оракула, то есть обращение к ней занимает всего один шаг.

Вот возможные соотношения между вышеупомянутыми классами задач (ученые до сих пор не уверены, совпадает ли P и NP).